
1990-2022

Republic of North Macedonia INFORMATIVE INVENTORY REPORT

Republic of North Macedonia INFORMATIVE INVENTORY REPORT

1990 - 2022

Submission under the

Convention on Long-Range Transboundary Air Pollution (CLRTAP)

Authors

Aleksandra Nestorovska Krsteska Energy and QA/QC Manager

Pavle Malkov Industrial and Solvent sector Expert

Martina Spasovska Transport Expert

Arminda Rushiti Agriculture Expert

Margareta Cvetkovska Waste Expert

Reviewed and approved by

Katerina Nikolovska

Design and DTP

Katerina Nikolovska

Acknowledgements

This report has been prepared by the Macedonian Environmental Information Center a department within the Ministry of Environment and Physical Planning. The authors of this report are: Aleksandra N. Krsteska, (Coordinator of Emission inventory and Energy expert), Pavle Malkov (Industry and Solvent expert), Martina Spasovska (Transport expert), Arminda Rushiti (Agriculture expert) and Margareta Cvetkovska (Waste expert). The data management and data transfer in the NFR reporting tables as well as NFR tool, KCA and trend analysis have been done by Aleksandra N.Krsteska. The check of the content was performed by Martina Spasovska.

The coordination and editing of the report was performed by Martina Spasovsksa (Head of division), and approved by Katerina Nikolovska (Head of department).

CONTENTS

LI	ST OF A	BREVIATIONS	22
LI	ST OF FI	GURES	30
LI	ST OF AF	PPENDIXES	31
E)	KECUTIV	E SUMMARY	33
	1.1.	Summary of the main differences in the inventory since the last submission	34
	1.2.	Priorities for improvement	40
	1.3.	Information on recalculation – main reasons for recalculations	40
	1.4.	Explanation of differences between reported national totals	40
	1.5. with NE	Clarification of the reason for differences in reported national totals for the entire terr	-
2	INTR	ODUCTION	43
	2.1.	National Inventory background	43
	2.2.	Institutional arrangements	51
	2.3.	Inventory preparation process	52
	2.4.	Methods and data sources	56
	2.5.	Key Categories	57
	2.6.	QA/QC and Verification methods	59
	2.6.1.	Quality control procedures	61
	2.6.2.	Quality assurance procedures	62
	2.6.3.	Archiving and documentation	62
	2.6.4.	Continuous improvement	64
	2.7.	General uncertainty evaluation	64
	2.7.1.	Results	65
	2.7.2.	Background information	69
	2.8.	General assessment of completeness	71
	2.8.1.	Sources not estimated (NE)	72
	2.8.2.	Sources included elsewhere (IE)	73
3.	EXPL	ANATION OF KEY TRENDS	77
	3.1.	Emission Trends for the Main Air Pollutants and CO	77
	3.1.1.	NOx emissions	
	3.1.2.	NMVOC emissions	79
	3.1.3.	SO ₂ emissions	
	3.1.4.	NH ₃ emissions	
	3.1.5.	CO emissions	
	3.2.	Emission Trends for Particulate Matter	
	3.2.1.	PM10 emissions	85

3.2.2.	PM2.5 emissions	87
3.2.3.	TSP emissions	89
3.2.4.	BC emissions	90
3.3.	Emission trends for Heavy Metals	92
3.3.1.	Lead (Pb) emissions	93
3.3.2.	Cadmium (Cd) emissions	94
3.3.3.	Mercury (Hg) emissions	95
3.4.	Emission trends for POPs	97
3.4.1.	PAH-4 emissions	98
3.4.2.	Dioxin and Furan emissions (PCDD/F)	99
3.4.3.	Hexachlorobenzene (HCB) emissions	101
3.4.4.	Polychlorinated biphenyl (PCB) Emissions	103
4. ENI	ERGY (NFR SECTOR 1)	106
4.1.	Sector overview	106
4.2.	Public electricity and heat production-NFR 1.A.1.a	108
4.2.1.	Methodological issues	109
4.2.2.	Source-specific uncertainties and time-series consistency	113
4.2.3.	Source-specific QA/QC and verification	114
4.2.4.	Source-specific recalculations	114
4.2.5.	Source-specific planned improvements	114
4.3.	Petroleum refining – NFR 1.A.1.b	114
4.3.1.	Methodological issues	114
4.3.2.	Source-specific uncertainties and time-series consistency	116
4.3.3.	Source-specific QA/QC and verification	116
4.3.4.	Source-specific recalculations including changes made in response to the 116	review process
4.3.5.	Source-specific planned improvements including those in response to the 116	review process
4.4.	Manufacturing industries and construction— NFR 1.A.2	117
4.4.1.	Methodological issues	117
4.4.2.	1.A.2. gviii - Stationary combustion in manufacturing industries and const 123	ruction: Other
4.4.3.	Source-specific uncertainties and time-series consistency	128
4.4.4.	Source-specific QA/QC and verification	129
4.4.5.	Source-specific recalculations including changes made in response to the 129	review process
4.4.6.	Source-specific planned improvements including those in response to the 129	review process
4.5.	Transport	129

4.5.1. Road transport –NFR 1.A.3	129
4.5.1.1. Road transport – NFR 1.A.3.bi.bii.biii.biv	129
4.5.1.1.1 Methodology	129
4.5.1.1.2. Source-specific uncertainties and time-series consistency	135
4.5.1.1.3. Source-specific QA/QC and verification	135
4.5.1.1.4. Source-specific recalculations including changes made in response to the re	
No recalculations done	136
4.5.1.1.5. Source-specific planned improvements including those in response to the re	•
4.5.1.2. Gasoline evaporation (from vehicles) –NFR 1.A.3.b.v	136
4.5.1.2.1. Methodological issues	136
4.5.1.2.2. Source-specific uncertainties and time-series consistency	138
4.5.1.2.3. Source-specific QA/QC and verification	138
4.5.1.2.4. Source-specific recalculations including changes made in response to the re	
4.5.1.2.5. Source-specific planned improvements including those in response to the re	•
4.5.1.3. Road vehicle tire and brake wear NFR 1.A3.b.vi and road surface wear – NFR	1.A.3.b.vii138
4.5.1.3.1. Methodological issues	138
4.5.1.3.2. Source-specific uncertainties and time-series consistency	141
4.5.1.3.3. Source-specific QA/QC and verification	141
4.5.1.3.4. Source-specific recalculations including changes made in response to the re	•
4.5.1.3.5. Source-specific planned improvements including those in response to the re	•
4.5.2. Aviation	141
4.5.2.1. International aviation LTO – NFR 1.A.3.ai(i)	141
4.5.2.1.1. Methodological issues	141
4.5.2.2. International aviation cruise (civil) – NFR 1.A.3.ai(ii)	142
4.5.2.2.1. Methodological issues	142
4.5.2.3. Domestic aviation cruise – NFR 1.A.3.aii(ii)	143
4.5.2.3.1. Methodological issues	143
4.5.2.3.2. Source-specific uncertainties and time-series consistency	144
4.5.2.3.3. Source-specific QA/QC and verification	144
4.5.2.3.4. Source-specific recalculations including changes made in response to the re	
4.5.2.3.5. Source-specific planned improvements including those in response to the re	•
4 E. 2 Pailways NED 1 A 2 s	1/5

4.5.3.1.	. Methodology	145
4.5.3.2.	. Source-specific uncertainties and time-series consistency	148
4.5.3.3.	. Source-specific QA/QC and verification	148
4.5.3.4.	. Source-specific recalculations including changes made in response to the review p	
	. Source-specific planned improvements including those in response to the review p	
4.5.4.	National navigation - using diesel fuel oil – NFR 1.A.3.d.ii	
4.5.5.	Methodological issues	148
4.5.5.1.	. Source-specific uncertainties and time-series consistency	150
4.5.5.2.	. Source-specific QA/QC and verification	150
	. Source-specific recalculations including changes made in response to the review p	
	. Source-specific planned improvements including those in response to the review p	
4.5.6.	Other. Mobile (including military. land based and recreational boats) – NFR 1.A.5.b	150
4.5.6.1.	. Methodological issues	150
4.5.6.2.	. Source-specific uncertainties and time-series consistency	151
4.5.6.3.	. Source-specific QA/QC and verification	151
	. Source-specific recalculations including changes made in response to the review p	
	. Source-specific planned improvements including those in response to the review p	
4.6.	Small Combustion and Non-road mobile sources and machinery – NFR 1.A.4	151
4.6.1.	Methodological issues	151
4.6.2.	Source-specific uncertainties and time-series consistency	152
4.6.3.	Source-specific QA/QC and verification	152
4.6.4.	Source-specific recalculations including changes made in response to the review p 152	rocess
4.6.5.	Commercial/Institutional – stationary combustion – NFR 1.A.4.ai	152
4.6.5.1.	. Methodological Issues	152
4.6.5.2.	. Source-specific uncertainties and time-series consistency	156
4.6.5.3.	. Source-specific QA/QC and verification	156
	. Source-specific recalculations including changes made in response to the review p	
	. Source-specific planned improvements including those in response to the review p	
	Commercial/Institutional – stationary combustion – NFR 1.A.4.aii	
	. Methodological Issues	
	Source-specific uncertainties and time-series consistency	

4.6.6.3. Source-specific QA/QC and verification	159
4.6.6.4. Source-specific recalculations including changes made in response to the review	-
4.6.6.5. Source-specific planned improvements including those in response to the review	-
4.6.7. Commercial/Institutional – stationary combustion – NFR 1.A.b.i	159
4.6.7.1. Methodological Issues	159
4.6.7.2. Source-specific uncertainties and time-series consistency	165
4.6.7.3. Source-specific QA/QC and verification	165
4.6.7.4. Source-specific recalculations including changes made in response to the review	-
4.6.7.5. Source-specific planned improvements including those in response to the review	•
4.6.8. Residential: Household and gardening (mobile) – NFR 1.A.4.bii	165
4.6.8.1. Methodological Issues	165
4.6.8.2. Source-specific uncertainties and time-series consistency	167
4.6.8.3. Source-specific QA/QC and verification	167
4.6.8.4. Source-specific recalculations including changes made in response to the review	•
4.6.8.5. Source-specific planned improvements including those in response to the review	
4.6.9. Agriculture/Forestry/Fishing: Stationary – NFR 1.A.4.ci	
4.6.9.1. Methodological Issues	167
4.6.9.2. Source-specific uncertainties and time-series consistency	168
4.6.9.3. Source-specific QA/QC and verification	168
4.6.9.4. Source-specific recalculations including changes made in response to the review	-
4.6.9.5. Source-specific planned improvements including those in response to the review	process
4.6.10. Agriculture/Forestry/Fishing: Off-road vehicles and other machinery – NFR 1A4c	ii 169
4.6.10.1. Methodological Issues	169
4.6.10.2. Source-specific uncertainties and time-series consistency	172
4.6.10.3. Source-specific QA/QC and verification	172
4.6.10.4. Source-specific recalculations including changes made in response to the review	•
4.6.10.5. Source-specific planned improvements including those in response to the review	-
4.6.11. Agriculture/Forestry/Fishing: Off-road vehicles and other machinery – NFR 1.A.4	.ciii 172
4.7. Fugitive emission from fuels- NFR 1 B	172
4.7.1. Coal mining and handling – NFR 1.B.1.a	172

4.7.1.1. Methodological issues	172
4.7.1.2. Source-specific uncertainties and time-series consistency	173
4.7.1.3. Source-specific QA/QC and verification	173
4.7.1.4. Source-specific recalculations including changes made in response to	
4.7.1.5. Source-specific planned improvements including those in response to	•
4.7.2. Fugitive emissions oil: Refining/storage –NFR 1.B.2.aiv	174
4.7.2.1. Methodological issues	174
4.7.2.2. Source-specific uncertainties and time-series consistency	175
4.7.2.3. Source-specific QA/QC and verification	175
4.7.2.4. Source-specific recalculations including changes made in response to	•
4.7.2.5. Source-specific planned improvements including those in response to	the review process
4.7.3. Distribution of oil products – NFR 1.B.2.a.v	
4.7.3.1. Methodological issues	
4.7.3.2. Source-specific uncertainties and time-series consistency	
4.7.3.3. Source-specific QA/QC and verification	
4.7.3.4. Source-specific recalculations including changes made in response to	the review process
4.7.3.5. Source-specific planned improvements including those in response to	the review process
4.7.4. Venting and flaring – 1.B.2.c.	
4.7.4.1. Methodological issues	177
4.7.4.2. Source-specific uncertainties and time-series consistency	178
4.7.4.3. Source-specific QA/QC and verification	178
4.7.4.4. Source-specific recalculations including changes made in response to	
4.7.4.5. Source-specific planned improvements including those in response to	•
4.7.5. Other fugitive emissions from energy production – 1.B.2.d	178
4.7.5.1. Source-specific uncertainties and time-series consistency	179
4.7.5.2. Source-specific QA/QC and verification	179
4.7.5.3. Source-specific recalculations including changes made in response to	•
4.7.5.4. Source-specific planned improvements including those in response to	the review process
INDUSTRIAL PROCESSES AND PRODUCT USE (NFR SECTOR 2)	
5.1 Sector overview	181

5.2.	General description	181
5.3.	Mineral products – NFR 2.A	182
5.3.1.	Cement production – 2.A.1	182
5.3.1.1.	Methodological issues	183
5.3.1.2.	Source-specific uncertainties and time-series consistency	184
5.3.1.3.	Source-specific QA/QC and verification	184
	Source-specific recalculations including changes made in response to the review	
	Source-specific planned improvements including those in response to the review	-
5.3.2.	Lime production – NFR 2.A.2	185
5.3.2.1.	Methodological issues	185
5.3.2.2.	Source-specific uncertainties and time-series consistency	185
5.3.2.3.	Source-specific QA/QC and verification	186
	Source-specific recalculations including changes made in response to the review	-
	Source-specific planned improvements including those in response to the review	•
5.3.3.	Glass production – NFR 2.A.3	186
5.3.3.1.	Methodological issues	186
5.3.3.2.	Source-specific uncertainties and time-series consistency	188
5.3.3.3.	Source-specific QA/QC and verification	188
	Source-specific recalculations including changes made in response to the review	•
	Source-specific planned improvements including those in response to the review	•
5.3.4.	Quarrying and mining of minerals other than coal – NFR 2.A.5.a	188
5.3.4.1.	Methodological issues	188
5.3.4.2.	Source-specific uncertainties and time-series consistency	189
5.3.4.3.	Source-specific QA/QC and verification	189
	Source-specific recalculations including changes made in response to the review	•
	Source-specific planned improvements including those in response to the review	-
	Construction and demolition – NFR 2.A.5.b	
	Methodological issues	
	Source-specific uncertainties and time-series consistency	
5.3.5.3.	Source-specific QA/QC and verification	191
	Source-specific recalculations including changes made in response to the review	

5.3.5.5.	. Source-specific planned improvements including those in response to the review	-
5.3.6.	Storage, handling and transport of mineral products – NFR 2.A.5.c	
5.3.6.1.	Methodological issue	192
5.3.6.2.	Source-specific uncertainties and time-series consistency	193
5.3.6.3.	Source-specific QA/QC and verification	193
	Source-specific recalculations including changes made in response to the review	-
	Source-specific planned improvements including those in response to the review	•
5.4.	Chemical Industry – NFR 2B	193
5.4.1.	Other chemical industry – NFR 2.B.10.a	193
5.4.1.1.	Methodological issues	193
5.4.1.2.	Source-specific uncertainties and time-series consistency	195
5.4.1.3.	Source-specific QA/QC and verification	195
	Source-specific recalculations including changes made in response to the review	-
	Source-specific planned improvements including those in response to the review	•
5.5.	Metal Production – NFR 2.C	196
5.5.1.	Iron and steel production – NFR 2.C.1	196
5.5.1.1.	Methodological Issues	196
5.5.1.2.	Source-specific uncertainties and time-series consistency	198
5.5.1.3.	Source-specific QA/QC and verification	199
5.5.1.4.	Source-specific recalculations including changes made in response to the review	
	Source-specific planned improvements including those in response to the review	•
5.5.2.	Ferroalloy's production – NFR 2.C.2.	199
5.5.2.1.	Methodological issue	200
5.5.2.2.	Source-specific uncertainties and time-series consistency	201
5.5.2.3.	Source-specific QA/QC and verification	201
	Source-specific recalculations including changes made in response to the review	-
	Source-specific planned improvements including those in response to the review	•
5.5.3.	Aluminum production – NFR 2.C.3	202
5.5.3.1.	Methodological Issues	202
	Source-specific uncertainties and time-series consistency	
5.5.3.3.	Source-specific QA/QC and verification	203

5.5.3.4.	. Source-specific recalculations including changes made in response to the review p	
	. Source-specific planned improvements including those in response to the review p	
5.5.4.	Lead production – NFR 2.C.5	204
5.5.4.1.	. Methodological issues	204
5.5.4.2.	. Source-specific uncertainties and time-series consistency	206
5.5.4.3.	Source-specific QA/QC and verification	206
	. Source-specific recalculations including changes made in response to the review p	
5.5.4.5.	. Source-specific planned improvements including those in response to the review p	
5.5.5.	Zinc production–NFR 2.C.6	207
5.5.5.1.	. Methodological Issues	207
5.5.5.2.	. Source-specific uncertainties and time-series consistency	208
5.5.5.3.	. Source-specific QA/QC and verification	208
5.5.5.4.	. Source-specific recalculations including changes made in response to the review p	
	. Source-specific planned improvements including those in response to the review p	
5.5.6.	Copper production –NFR 2.C.7 a	209
5.5.6.1.	. Methodological Issues	209
5.5.6.2.	. Source-specific uncertainties and time-series consistency	210
5.5.6.3.	. Source-specific QA/QC and verification	211
5.5.6.4.	. Source-specific recalculations including changes made in response to the review p	
	. Source-specific planned improvements including those in response to the review p	
5.5.7.	Other metal production – NFR 2.C.7.c	211
5.5.7.1.	. Methodological issues	211
5.5.7.2.	. Source-specific uncertainties and time-series consistency	211
5.5.7.3.	. Source-specific QA/QC and verification	211
	. Source-specific recalculations including changes made in response to the review p	
	. Source-specific planned improvements including those in response to the review p	
	The NEIT noted that EF for SOx is miss linked in calculation file to I excel column ins column and this will be corrected in the next submission. Other products and solven	ts used
5.6.1.	Domestic solvent use including fungicides NFR 2.D.3.a	212
	Methodological issues	212

5.6.1.2.	. Source-specific uncertainties and time-series consistency	214
5.6.1.3.	. Source-specific QA/QC and verification	214
	. Source-specific recalculations including changes made in response to the review	-
	. Source-specific planned improvements including those in response to the review	•
5.6.2.	Road paving with asphalt NFR 2.D.3.b	214
5.6.2.1.	. Methodological issues	215
5.6.2.2.	. Source-specific uncertainties and time-series consistency	216
5.6.2.3.	. Source-specific QA/QC and verification	216
	. Source-specific recalculations including changes made in response to the review	•
5.6.2.5.	. Source-specific planned improvements including those in response to the review	-
5.6.3.	Asphalt roofing NFR 2.D.3.c	216
5.6.3.1.	. Methodological issues	216
	Source-specific uncertainties and time-series consistency	
5.6.3.3.	Source-specific QA/QC and verification	218
5.6.3.4.	. Source-specific recalculations including changes made in response to the review	w process
	. Source-specific planned improvements including those in response to the review	-
5.6.4.	Coating application – NFR 2.D.3.d	218
5.6.4.1.	. Source-specific uncertainties and time-series consistency	220
5.6.4.2.	. Source-specific QA/QC and verification	220
	. Source-specific recalculations including changes made in response to the review	
	. Source-specific planned improvements including those in response to the review	•
5.6.5.	Degreasing - NFR 2.D.3.e	220
5.6.5.1.	. Methodological issues	220
5.6.5.2.	. Source-specific uncertainties and time-series consistency	221
5.6.5.3.	. Source-specific QA/QC and verification	221
5.6.5.4.	. Source-specific recalculations including changes made in response to the review	•
	. Source-specific planned improvements including those in response to the review	•
5.6.5.6.	. Dry cleaning – NFR 2.D.3.f	222
5.6.5.7.	. Methodological issues	222
5.6.5.8.	. Source-specific uncertainties and time-series consistency	222

5.6.5.9.	Source-specific QA/QC and verification	222
5.6.5.10	0. Source-specific recalculations including changes made in response to the review p	
5.6.5.11	1. Source-specific planned improvements including those in response to the review p	
5.6.6.	Chemical products – NFR 2.D.3.g	222
5.6.6.1.	Methodological issues	223
5.6.6.2.	Source-specific uncertainties and time-series consistency	225
5.6.6.3.	Source-specific QA/QC and verification	225
5.6.6.4.	Source-specific recalculations including changes made in response to the review p	
	Source-specific planned improvements including those in response to the review p	
5.6.7.	Printing NFR – 2.D.3.h	225
5.6.7.1.	Methodological issues	225
5.6.7.2.	Source-specific uncertainties and time-series consistency	226
5.6.7.3.	Source-specific QA/QC and verification	226
	Source-specific recalculations including changes made in response to the review p	
5.6.7.5.	Source-specific planned improvements including those in response to the review p	
5.6.8.	Other solvent and product use – NFR 2.D.3.i and 2.G	226
5.6.8.1.	Methodological Issues	226
5.6.8.2.	Source-specific uncertainties and time-series consistency	230
5.6.8.3.	Source-specific recalculations including changes made in response to the review p	
	Source-specific planned improvements including those in response to the review p	
5.6.9.	Food and beverages industry - NFR 2.H.2	230
5.6.9.1.	Methodological issues	230
5.6.9.2.	Source-specific uncertainties and time-series consistency	233
5.6.9.3.	Source-specific QA/QC and verification	233
	Source-specific recalculations including changes made in response to the review p	
	Source-specific planned improvements including those in response to the review p	
No plan	nned improvements in this category	233
5.6.10.	Wood processing – NFR 2.I	233
5.6.10.1	1. Methodological issues	
5.6.10.2	2. Source-specific uncertainties and time-series consistency	234

5.6.	0.3. Source-specific QA/QC and verification	234
	0.4. Source-specific recalculations including changes made in response to the	•
5.6.	0.5. Source-specific planned improvements including those in response to the	review process
5.6.	1. Consumption of POPs and heavy metals – NFR 2.K	234
5.6.	1.1. Methodological issues	234
5.6.	1.2. Source-specific uncertainties and time-series consistency	235
5.6.	1.3. Source-specific QA/QC and verification	235
	1.4. Source-specific recalculations including changes made in response to the	•
	1.5. Source-specific planned improvements including those in response to the	•
6. A	GRICULTURE (NFR 3)	237
6.1.	Sector overview	237
6.2.	General description	237
6.3.	Manure management NFR 3.B	239
6.3.	. Methodological issues	239
6.3.	.1. Activity data and background information on the activity data	239
6.3.	.2. Emission factors	245
6.3.	. Source-specific uncertainties and time-series consistency	247
6.3.	Source-specific QA/QC and verification	248
6.3.	. Source-specific recalculations including changes made in response to the 248	review process
6.3.	. Source-specific planned improvements including those in response to the 249	review process
6.3.	.1. Methodological issues	249
6.3.	. Animal manure applied to soils (NFR 3.D.a.2)	251
6.3.	.1. Methodological issues	251
6.3.	. Urine and dung deposited by grazing animals (NFR 3.D.a.3)	252
6.3.	.1. Methodological issues	252
6.3.	.2. Source-specific uncertainties and time-series consistency	252
6.3.	.3. Source-specific QA/QC and verification	253
	.4. Source-specific recalculations including changes made in response to the	-
	.5. Source-specific planned improvements including those in response to the	
6.3.		t of agricultural
•	.1. Methodological issues	

		Source-specific recalculations including changes made in response to the review proce	
	6.3.8.3.	Source-specific planned improvements including those in response to the review proce	SS
		3.D.e Cultivated crops2	
	6.3.9.1.	Methodological issues2!	55
		Source-specific recalculations including changes made in response to the review proce	
	6.3.9.3.	Source-specific planned improvements including those in response to the review proce	SS
	6.3.10.		
7.	WAS	TE (NFR 5)2!	58
	7.1.	Sector overview	
	7.1.1.	Methodology2!	59
	7.1.2.	Source-specific uncertainties and time-series consistency	59
	7.1.3.	Source-specific QA/QC and verification2!	59
	7.1.4.	Source-specific recalculations including changes made in response to the review proce 260	
	7.1.5.	Source-specific planned improvements including those in response to the review proce 260	SS
	7.2.	Solid waste disposal on land (NFR 5.A)	50
	7.2.1.	Methodological issues	50
	7.2.2.	Source-specific uncertainties and time-series consistency	54
	7.2.3.	Source-specific QA/QC and verification	54
	7.2.4.	Source-specific recalculations including changes made in response to the review proce 264	SS
	7.2.5.	Source-specific planned improvements including those in response to the review proce 264	SS
		lation of NMVOC emissions for for period 2020-2022, due to the fact that value for lang year of GHG emissions was presented for the latest three years20	
	7.3.	Biological treatment of waste-Composting-NFR 5.B.120	54
	7.3.1.1.	Methodological issues	54
	7.3.2.	Source-specific uncertainties and time-series consistency	55
	7.3.3.	Source-specific QA/QC and verification	55
	7.3.4.	Source-specific recalculations including changes made in response to the review proce 265	SS
	7.3.5.	Source-specific planned improvements including those in response to the review proce 265	SS
	7.4.	Clinical Waste incineration - NFR 5.C	56
	7.4.1.	Methodological issues	56
	7.4.2.	Source-specific uncertainties and time-series consistency	ริ

	7.4.3.	Source-specific QA/QC and verification	268
	7.4.4.	Source-specific recalculations including changes made in response to the review page 268	orocess
	7.4.5.	Source-specific planned improvements including those in response to the review page 268	process
		culation of SOx emissions due to omiited number in the emission factor. EF 1.4 has bee	
	7.5.	Open burning of waste- NFR 5.C.2	268
	7.5.1.	Methodological issues	268
	7.5.2.	Source-specific uncertainties and time-series consistency	270
	7.5.3.	Source-specific QA/QC and verification	270
	7.5.4.	Source-specific recalculations including changes made in response to the review page 270	orocess
	7.5.5.	Source-specific planned improvements including those in response to the review page 270	process
	7.6.	Waste water treatment - NFR 5.D.1 and 5.D.2	271
	7.6.1.	Methodological issues	271
	7.6.2.	Source-specific uncertainties and time-series consistency	272
	7.6.3.	Source-specific QA/QC and verification	272
	7.6.4.	Source-specific recalculations including changes made in response to the review page 273	orocess
	7.6.5.	Source-specific planned improvements including those in response to the review page 273	process
8.	NAT	URAL SOURCES	275
	8.1.	Sector overview	275
	8.2.	General description	275
	8.3.	Forest fires – NFR 11.B	275
	8.3.1.	Methodological issues	275
	8.3.1.1.	Activity Data	275
	8.3.1.2.	. Emission factors	277
	8.3.2.	Source-specific uncertainties and time-series consistency	277
	8.3.3.	Source-specific QA/QC and verification	277
	8.3.4.	Source-specific recalculations including changes made in response to the review p	orocess
	8.3.5.	Source-specific planned improvements including those in response to the review page 277	process
9.	RECA	ALCULATIONS AND IMPROVEMENTS	279
	9.1.	Recalculations	279
	9.1.1.	Explanation of recalculations per sector	279
	9.2.	Planned Improvements	285

9.3. revie	Status of implementation of ERTs in-depth review recommendations (0 w and if applicable NECD review)	_
9.3.1	Status of implementation of last and previous reviews	286
9.3.2	Progress a schedule for implementation	292
	e recommendations given by the stage 3 review that have not implemented by table below	•
10.	PROJECTIONS	300
11.	REPORTING OF GRIDDED EMISSIONS AND LPS	301
12.	ADJUSMENTS	303
REFERE	NCES	304
APPEND	DIX 1: Key category analysis	307
	DIX 2: Summary source sectors use PM emission factors that include/exclude thent (see below)	
APPEND	DIX 3 Further elaboration of completeness	330
APPEND	DIX 4 National energy balance 2022	331
	DIX 5 Useful information - Nomenclature for reporting format (NFR) - Formation of UNECE/LRTAP convention for 2022	

LIST OF ABBREVIATIONS

AE-DEM	Air Emissions Data Exchange Module
CARDS	Community Assistance for Reconstruction Development and Stabilization
CPAPRNM	Cadastre of polluters and air pollutants in Republic of North Macedonia
CRF	Common Reporting Format
ЕВ	Executive Body
EEA	European Environment Agency
ЕМЕР	Cooperative Programme for M onitoring and E valuation of the Long-range Transmission of Air P ollutants in E urope
ETC/ACC	European Topic Centre on Air and Climate Change
ERT	Expert Review Team
EU	European Union
GB	G uide b ook
GHGs	Greenhouse Gases
GPG	Good Practice Guidance (of the IPCC)
HDVs	Heavy-Duty Vehicles
нм	Heavy Metals
IPCC	Intergovernmental Panel on Climate Change
KCA	Key Category Analysis
LDTs	Light-Duty Trucks
LE	Law on Environment
LHV	Low Heating Value
LPS	Large Point Source
MAFWS	Ministry of Agriculture, Forestry and Water Supply
ME	Ministry of Economy
MEIC	Macedonian Environmental Informative Centre
MEPP	Ministry of Environment and Physical Planning
MOI	Ministry of Interior
MS	Member State
NAPFUE	Nomenclature for Air Pollution of Fuels
NERP	National Emission Reduction Plan
NEAP	National Environmental Action Plan
NFR	Nomenclature For Reporting
PCs	Passenger Cars

POPs	Persistent Organic Pollutants
QA/QC	Quality Assurance/Quality Control
RM	Republic of Macedonia
SNAP	Selected Nomenclature for Air Pollution
SSO	State Statistical Office
UNECE/ CLRTAP	United Nations Economic Commission for Europe/Convention on Long-range Transboundary Air Pollution
UNFCCC	United Nations Framework Convention on Climate Change
CORINAIR	CORe INventory AIR emissions
EAF	Electric Arc Furnace
WWTP	Wastewater Treatment Plants
CAA	Civil Aviation Agency
NEIT	National Emission Inventory Team
MOD	Ministry of Defense
PEMF	Public eEnterprise Macedonian Forests
MAFWS	Ministry of Agriculture, Forestry and Water Supply
2W	Two Wheelers
AS	Amonium Sulfate
AN	Amonium Nitrate
CAN	Calcium Amonium Nitrate

LIST OF TABLES

Table 1 Emission trends 1990 – 2022 for the main air pollutants and CO	35
Table 2 Emission trends for particulate matter 1990-2022	36
Table 3 Emission trends for heavy metals 1990-2022	37
Table 4 Emission trends for POPs 1990-2022	
Table 5 Status of ratification of the protocols under CLRTAP	44
Table 6 Development of the inventory work in North Macedonia	
Table 7 Activity data sources	56
Table 8 Key categories for all air pollutants for 2022	58
Table 9 Completeness Analysis 2022	60
Table 10 Annual time schedule	
Table 11 Rating definitions for activity data	65
Table 12 Rating definitions for emission factors	65
Table 13 Result of overall uncertainty estimation for the main pollutants SO ₂ , NO _x , NMVOC, N	
PM _{2.5}	
Table 14 Uncertainty estimation of SO ₂ emissions 1990 and 2022	
Table 15 Uncertainty estimation of NO _x emissions 1990 and 2022	
Table 16 Uncertainty estimation of NMVOC emissions 1990 and 2022	67
Table 17 Uncertainty estimation of NH₃ emissions 1990 and 2022	68
Table 18 Uncertainty estimation of PM2.5 emissions 1990 and 2022	
Table 19 Relative errors of livestock survey 2015	
Table 20 Notation keys used in the NFR	
Table 21 Number of "not estimated" (NE) per sector and pollutant in 2022	
Table 22 Number of "included elsewhere" (IE) per sector and pollutant in 2022	
Table 23 Number of "Not avaliable" (NA) per sector and pollutant in 2022	
Table 24 Number of "Not occuring" (NO) per sector and pollutant in 2022	
Table 25 Emission trends 1990 – 2021 for the main air pollutants and CO	
Table 26 Emission trends for particulate matter 1990-2022	
Table 27 Emission trends for heavy metals 1990-2022	
Table 28 Emission trends for POPs 1990-2022	
Table 29 NFR categories included in Energy sector for 2022	
Table 30 NFR categories not included in Energy sector for 2022	
Table 31 TPP and DHP Installation technical properties and BAT	
Table 32 Activity data for source category 1.A.1.a Public electricity and heat production by type	
Table 22 February Control of Adams and Adams a	
Table 33 Emission factors for source category Public electricity and heat production 1.A.1.a by t fuel	
Table 34 Implied Emission factors for source category Public electricity and heat production 1.A	
using measurements data for period 2009 -2012	-
Table 35 Implied Emission factors for source category Public electricity and heat production 1.A	
type of fuel for 2014-2017	-
Table 36 Activity data for source category 1.A.1.b- Petroleum refining by type of fuel	
Table 37 Emission factors for source category 1.A.1.b- Petroleum refining	
, , , , , , , , , , , , , , , , , , , ,	
and construction: Iron and steel	
Table 39 Activity data for source category 1.A.2.b - Stationary combustion in manufacturing ind	
and construction: Iron and steel	
Table 40 Activity data for source category 1.A.2.c - Stationary combustion in manufacturing ind	
and construction: Chemicals	
Table 41 Activity data for source category 1.A.2.d - Stationary combustion in manufacturing ind	
and construction: Pulp. paper and print	120

Table 42 Activity data for source category 1.A.2.e - Stationary combustion in manufacturing indus	stries
and construction: Food processing, beverages, and tobacco	.121
Table 43 Activity data for category source category	.122
Table 44 Activity data for source category 1.A.2.gvii - Mobile Combustion in manufacturing indus	stries
and construction: for diesel fuel	
Table 45 Emission factors for source category 1.A.2 - Stationary combustion in manufacti	uring
industries and construction for biomass	
Table 46 Emission factors for source category 1.A.2 - Stationary combustion in manufactor	uring
industries and construction for gaseous fuel	
Table 47 Emission factors for source category 1.A.2 - Stationary combustion in manufacti	uring
industries and construction for solid fuel	. 126
Table 48 Emission factors for source category 1.A.2 - Stationary combustion in manufactor	uring
industries and construction for liquid fuel	
Table 49 Emission factors for category 1.A.2 - Stationary combustion in manufacturing industries	
construction: Other for clinker	
Table 50 Emission factors for source category 1.A.2.gvii - Mobile Combustion in manufactors	
industries and construction: for diesel fuel	
Table 51 Activity data for source category 1.A.3.b - Road transport for period 1990-2022	
Table 52 Activity data for source category 1.A.3.b Road transport for 2022	
Table 53 Emission factor for source category 1.A.3.b - Road Transport used for calculation of emission	
in the period 1990-2004 by use of Tier 1 methodology	
Table 54 Activity data for source category 1.A.3.v - Gasoline evaporation for Tier 1 calculation	
Table 55 Evaporative emissions emission factors source category 1.A.3.bv - Gasoline evaporation	
gasoline fueled road vehicles — when daily temperature range is around 10 to 25 °C	
Table 56 Activity data for the source categories 1.A.3.bvi - Road vehicle tire and brake wear	
1.A.3.b.vii Road surface wear	
Table 57 Emission factors for source category 1.A.3.b.vi - Road vehicle tire	
Table 58 Emission factors for the source category 1.A.3.bvii Road surface wear	
Table 59 Activity data for source category 1.A.3.ai (i) - International aviation LTO civil (number of	
Table 60 Emission factors for source category 1.A.3.ai (i) - International aviation LTO civil	
Table 61 Activity data for fuel consumption for source category 1.A.3.ai(ii) - International avia	ation
cruise (civil)	. 143
Table 62 Emission factors for 1.A.3.ai(ii) - International aviation cruise (civil)	. 143
Table 63 Activity data for source category 1.A.3.aii(ii) - Domestic aviation cruise (civil)	. 144
Table 64 Emission factors for NFR - 1.A.3.aii (ii)	.144
Table 65 Activity data for diesel fuel consumption in source category 1.A.3.c - Railways - Tier 1	. 146
Table 66 Activity data for diesel fuel consumption in source category 1.A.3.c – Railways for 2020 –	2022
Tier 2	.146
Table 67 Emission factors for source category 1.A.3 - Railways	. 147
Table 68 Activity data for diesel consumption for source category 1.A.3.d.ii - National navigation - (_
diesel fuel oil 1990 -2022	
Table 69 Emission factors for source category 1.A.3.dii – National navigation	. 149
Table 70 National content of sulfur in diesel used for calculation of SOx emissions 1.A.3.dii – Nat navigation	
Table 71 Activity data for liquid fuel and aviation gasoline consumption for source category 1.A.	
Other, Mobile for 2015-2022	
Table 72 Activity data for the source category 1.A.4.ai Commercial/Institutional – static	
combustion	•
Table 73 Emission factors for biomass for source category 1.A.4.ai - Commercial/Institution	
stationary combustion	

stationary combustion
stationary combustion
Table 76 Emission factors for liquid fuels for source category 1.A.4.ai - Commercial/Institutional
stationary combustion
Table 77 Activity data for the source category 1.A.4.aii Commercial/Institutional: Mobile15
Table 78 Emission factors for liquid fuels for source category 1.A.4.aii - Commercial/Institutional
mobile
Table 79 Consumption and Number of households using the type of energy15
Table 80 Activity data for source category 1.A.4.bi - Residential: Stationary16
Table 81 Emission factors for biomass for source category 1.A.4.bi - Residential: Stationary16
Table 82 Emission factors for coal for source category 1.A.4.bi - Residential: Stationary16
Table 83 Emission factors for natural gas for source category 1.A.4.bi - Residential: Stationary 16
Table 84 Emission factors for liquid fuels for source category 1.A.4.bi - Residential: Stationary 16
Table 85 Activity data for source category 1.A.4.bii - Residential: Household and gardening (mobile
Table 86 Emission factors for source category 1.A.4.bii - Residential: Household and gardenin
(mobile)
Table 87 Activity data for source category 1.A.4.ci - Agriculture/Forestry/Fishing: Stationary 16
Table 88 Activity data for source category 1.A.4.cii - Agriculture/Forestry/Fishing: Off-road vehicle
and other machinery
Table 89 Emission for source category 1.A.4.cii - Agriculture/Forestry/Fishing: Off-road vehicles an
other machinery for diesel
Table 90 Emission factors for LPG source category 1.A.4.cii - Agriculture/Forestry/Fishing: Off-roa
vehicles and other machinery
Table 91 Emission factors for gasoline for source category 1.A.4.cii - Agriculture/Forestry/Fishing: Of
road vehicles and other machinery17
Table 92 Activity data for source category 1.B.1.a - Fugitive emission from solid fuels: Coal mining an
handling
Table 93 Emission factors for 1.B.1.a - Fugitive emission from solid fuels: Coal mining and handlin
Table 94 Activity data for source category 1.B.2.aiv - Fugitive emissions oil: Refining/storage 17
Table 95 Emission factors for source category 1.B.2.aiv - Fugitive emissions oil: Refining/storage 17
Table 96 Activity data for source category 1.B.2.a.v - Distribution of oil products17
Table 97 Emission factors for source category 1.B.2.a.v - Distribution of oil products for NMVOC 17
Table 98 Activity data for source category 1.B.2.c - Venting and flaring17
Table 99 Emission factors for source category 1B2c Venting and flaring17
Table 100 Activity data for source category 1.B.2.d - Other fugitive emissions from energy productio
Table 101 Emission factors for source category 1.B.2.d -Other fugitive emissions from energy 17
Table 102 NFR categories covered in Industrial processes sector for 202218
Table 103 Activity data for source category 2.A.1 - Cement production
Table 104 Emission factors for source category 2.A.1 cement production18
Table 105 Abatement efficiencies (η _{abatement}) for source category 2.A.1 Cement production
Table 106 Activity data for source category 2.A.2 - Lime production
Table 107 Emission factors for source category 2.A.2 - Lime production
Table 108 Activity data for 2.A.3 - Flat glass production
Table 109 Emission factors for source category 2.A.3 Flat glass production
Table 110 Activity data for source category 2.A.3 - Glass wool production
Table 110 / letting data for source category 2.74.5 Glass woor production

Table 112 Emission factors for minerals produced for source category 2.A.5.a Quarrying ar	
the minerals other than coal	
Table 113 Emission factors for minerals produced for 2.A.5.a source category - Quarrying an	nd mining
of minerals other than coal	
Table 114 Activity data for constructed (completed and unfinished) individual dwellings f	or source
category 2.A.5.b - Construction and demolition	190
Table 115 Emission factors for source category 2.A.5.b - Construction and demolition-Const	ruction of
apartment buildings	190
Table 116 Activity data for constructed public dwellings for source category 2.A.5.b - Constru	iction and
demolition	191
Table 117 Emission factors for source category 2.A.5.b - Construction and demolition-Non-re-	esidentia
contruction	191
Table 118 Activity data for source category 2.A.5.c - Storage, handling and transport o	f minera
products	
Table 119 Emission factors for source category 2.A.5.c - Storage handling and transport of	of minera
products	193
Table 120 Activity data for source category 2.B.10 – Other chemical industry	194
Table 121 Emission factors for source category 2.B.10.a Other chemical industry	
Table 122 Activity data for source category 2.C.1 - Iron and steel production	196
Table 123 Activity data for steel and hot and cold ingots production in the period of 2016-20	
Table 124 Emission factors for source category 2.C.1 - Iron and steel production, steel making	
arc furnace, abated by fabric filter	-
Table 125 Emission factors for source category 2.C.1 - Iron and steel production, rolling r	
rolling mills	
Table 126 Emission factors for source category 2.C.1 - Iron and steel production, rolling	
rolling mills	
Table 127 Activity data for the source category 2.C.2 - Ferroalloy production	200
Table 128 Emission factors for source category 2.C.2 - Ferroalloys production - prod	uction of
ferronickel for historical data	
Table 129 Implied emission factors for 2.C.2 Ferroalloys production – production of ferros	silicon for
historical data	
Table 130 Activity data for source category 2.C.3 - Aluminum production	
Table 131 Emission factors for source category 2.C.3 - Secondary Aluminum production	
Table 132 Activity data for source category 2.C.5 - Lead production	
Table 133 Emission factors for source category 2.C.5 - Primary Lead production	
Table 134 Emission factors for source category 2.C.5 – Secondary Lead production 1990-200	
Table 135 Emission factors for source category 2.C.5 - Secondary Lead production for 2010-2	
Table 136 Activity data for source category 2.C.6 - Zinc production	
Table 137 Emission factors for source category 2.C.6 - Primary Zinc production	
Table 138 Emission factors for source category 2.C.6 - Secondary Zinc production	
Table 139 Activity data for source category 2.C.7 a - Copper production	
Table 140 Emission factors for source category 2.C.6 - Secondary Copper production	
Table 141 Activity data for source category 2.C.7.c – Other Metals production	
Table 142 Emission factors for 2.C.7.c - Other Metals production	
Table 143 Activity data for source category 2.D.3.a - Domestic solvent use including fung	
different products and product types for period 1990-2004 using Tier 1 methodology	
Table 144 Activity data for source category 2.D.3.a Domestic solvent use including fung	
different products and product types for period 2005-2020 using Tier 2 methodology	
Table 145 Emission factors for the source category 2.D.3.a - Domestic solvents use including f	
Table 143 Lillission factors for the source category 2.D.3.a - Domestic solvents use including i	_
Table 146 Activity data for source category 2.D.3.b - Road paying with asphalt	

Table 147 Emission factors for source category 2.D.3.b - Road paving with asphalt	216
Table 148 Activity data for source category 2.D.3.c - Asphalt roofing	217
Table 149 Emission factors for source category 2.D.3.c - Road paving with asphalt	218
Table 150 Activity data for source category 2.D.3.d - Coating application	219
Table 151 Emission factors for source category 2.D.3.d - Coating application	220
Table 152 Activity data for the source category 2.D.3.e Degreasing	221
Table 153 Emission factor for source category 2.D.3.e Degreasing	221
Table 154 Emission factor for the source category 2.D.3.f- Dry Cleaning	222
Table 155 Activity data for source category 2.D.3.g - Chemical products	
Table 156 Emission factors for source category 2.D.3.g - Chemical Products	
Table 157 Emission factors for source category 2.D.3.h Printing	
Table 158 Activity data for the source category 2.D.3.i and 2.G - Other solvent and product use (So	
Statistical yearbooks (1990-2004) and MAKSTAT/Industry in the Republic of North Macedonia (2	
2022),	
Table 159 Emission factors for source category 2.D.3.i and 2.G - Other solvents and product use .	
Table 160 Activity data for source category 2.H.2 - Food and beverage industry (Source Stati	
yearbook (year) (1990-2004) and Industry in the Republic of North Macedonia (2005-2022)	
Table 161 Emission factors for source category 2.H.2 - Food and beverages industry	
Table 162 Activity data for source category 2.I - Wood processing	
Table 163 Emission factors for source category 2.I Wood processing	
Table 164 Emission factors for source category 2.K- Consumption of POPs and heavy metals	
Table 165 NFR categories covered in Agriculture sector for 1990-2022	
Table 166 Domestic livestock population and its trend 1990–2022	
Table 167 Domestic poultry and its trend 1990–2022	
Table 168 NH ₃ emission factors for source categories 3.B - Manure management and 3.D - Agricul	
Soils	
Table 169 NOx and NMVOC emission factors for source category 3B - Manure management	
Table 170 TSP, PM10 and PM2.5 emission factors for source category 3.B - Manure management	
Table 171 Uncertainties of activity data, emission factors and emissions for NFR 3.B	
Table 172 Activity data for source category NFR 3.D.a.1 - Inorganic N-fertilizers	
Table 173 NH ₃ Emissions factors for source category NFR 3.D.a.1 - Inorganic fertilizers	
Table 174 NOx Emissions factors for source category NFR 3.D.a.1 - Inorganic fertilizers	
Table 175 Uncertainties of emissions, emission factors and activity data	
Table 176 Activity data for source category 3.D.c	
Table 177 Emission factors	
Table 177 Emission factors	
Table 179 Emission factors for NMVOC	
Table 180 NFR categories included or not included in Waste sector for 2016	
Table 181 Type of waste, percentage and considerations in FOD model	
Table 182 Type of waste, and quantity in tons	
Table 183 Activity data for source category 5.A – Solid waste disposal on land for the period 1	
2022	
Table 184 Parameter used for methane calculation of different waste types for source category.	
,,	
Biological treatment of waste	
5A - Biological treatment of waste	
Table 186 Emission factors for source category 5.A- Biological treatment of waste	
Table 187 Uncertainties of emissions, emission factors and activity data for 5.A	
Table 188 Activity data for source category 5.B.1 – Waste composted 1990-2022	
Table 189 Quantity of clinical waste incinerated in the period 2000–2022	
Table 190 Emission factors for source category 5.c.1.dii - Clinical waste incineration	∠66

Table 191 Activity data for source category 5.C.2 - Open burning of waste	269
Table 192 Emission factors for source category 5.C.2 - Open burning of waste	269
Table 193 Activity data for source category 5.D.1 - Wastewater treatment-(1990-2022)	271
Table 194 Activity data for source category 5.D.2 – Industrial Wastewater treatment-(1990-2022)	272
Table 195 Completed/Not completed NFRs in sector Natural sources	275
Table 196 Activity data for source category 11.B Forest fires	276
Table 197 Emission factors for source category 11.B Forest fires	277
Table 198 Recalculation difference of NOx emissions [kt] compared to submission in 2022	279
Table 199 Recalculation difference of NMVOC emissions [kt] compared to submission in 2021	280
Table 200 Recalculation difference of SO₂ emissions [kt] compared to submission in 2021	280
Table 201 Recalculation difference of NH₃ emissions [kt] compared to submission in 2021	280
Table 202 Recalculation difference of PM2.5 emissions [kt] compared to submission in 2021	281
Table 203 Recalculation difference of PM10 emissions [kt] compared to submission 2021	281
Table 204 Recalculation difference of TSP emissions [kt] compared to submission in 2021	281
Table 205 Recalculation difference of CO emissions [kt] compared to submission in 2021	282
Table 206 Recalculation difference of Pb emissions [t] compared to submission in 2021	282
Table 207 Recalculation difference of Cd emissions [t] compared to submission in 2021	283
Table 208 Recalculation difference of Hg emissions [t] compared to submission in 2021	283
Table 209 Recalculation difference of PCDD/ PCDF emissions [t] compared to submission in 2021	283
Table 210 Recalculation difference of PAHs emissions [t] compared to submission in 2021	284
Table 211 Recalculation difference of HCB emissions [kg] compared to submission in 2021	284
Table 212 Recalculation difference of PCB emissions [kg] compared to submission in 2021	284
Table 213 Planned improvements	285
Table 214 Sectorial improvements planned	292
Table 215 Key source categories for emissions of NO _X in Gg	307
Table 216 Key source categories for emissions of NMVOC in Gg	307
Table 217 Key source categories for emissions of SO ₂ in Gg	308
Table 218 Key source categories for emissions of NH₃ in Gg	309
Table 219 Key source categories for emissions of CO in Gg	309
Table 220 Key source categories for emissions of TSP in Gg	310
Table 221 Key source categories for emissions of PM2.5 in Gg	310
Table 222 Key source categories for emissions of PM10 in Gg	311
Table 223 Key source categories for emissions of BC in Gg	311
Table 224 Key source categories for emissions of Pb in Mg	311
Table 225 Key source categories for emissions of Cd in Mg	312
Table 226 Key source categories for emissions of Hg in Mg	313
Table 227 Key source categories for emissions of As in Mg	313
Table 228 Key source categories for emissions of Cr in Mg	313
Table 229 Key source categories for emissions of Cu in Mg	314
Table 230 Key source categories for emissions of Ni in Mg	314
Table 231 Key source categories for emissions of Se in Mg	315
Table 232 Key source categories for emissions of Zn in Mg	315
Table 233 Key source categories for emissions of DIOX in g I-TEQ	316
Table 234 Key source categories for emissions of PAHs in Mg	316
Table 235 Key source categories for emissions of HCB in kg	316
Table 236 Key source categories for emissions of PCB in kg	

LIST OF FIGURES

Figure 1 Institutional arrangements	52
Figure 2 Scheme of inventory preparation process	53
Figure 3 Roles in inventory preparation and submission	59
Figure 4 Archiving system	
Figure 5 Improvement Cycle	64
Figure 6 National total NOx emissions 1990-2022	78
Figure 7 NOx emissions in North Macedonia 1990-2022 by sectors	
Figure 8 National total NMVOC emissions 1990-2022	80
Figure 9 NMVOC emissions in North Macedonia 1990-2022 by sectors	
Figure 10 National total SO₂ emissions 1990-2022	81
Figure 11 SO₂ emissions in North Macedonia 1990–2022 by sectors	82
Figure 12 National total NH₃ emissions 1990-2022	82
Figure 13 NH₃ emissions in North Macedonia 1990-2022 by sectors	83
Figure 14 National total CO emissions 1990-2022	84
Figure 15 CO emissions in North Macedonia 1990-2022 by sectors	84
Figure 16 National total PM10 emissions 1990-2022	86
Figure 17 PM10 emissions in North Macedonia 1990-2022 by sectors	87
Figure 18 National total PM2.5 emissions 1990-2022	88
Figure 19 PM2.5 emissions in North Macedonia 1990-2022 by sectors	89
Figure 20 National total TSP emissions 1990-2022	90
Figure 21 TSP emissions in North Macedonia 1990-2022 by sectors	90
Figure 22 National total BC emissions 1990-2022	
Figure 23 BC emissions in North Macedonia 1990-2022 by sectors	91
Figure 24 National total Pb emissions 1990-2022	93
Figure 25 Pb emissions in North Macedonia 1990-2022 by sectors	94
Figure 26 National total Cd emissions 1990-2022	95
Figure 27 Cd emissions in North Macedonia 1990-2022 by sectors	
Figure 28 National total Hg emissions 1990-2022	96
Figure 29 Hg emissions in North Macedonia 1990-2022 by sectors	
Figure 30 National total PAHs emissions 1990-2022	99
Figure 31 PAH-4 emissions in North Macedonia 1990-2022 by sectors	99
Figure 32 National total PCDD/F emissions 1990-2022	100
Figure 33 Dioxin/furan emissions in North Macedonia 1990-2022 by sectors	
Figure 34 National total HCB emissions 1990-2022	
Figure 35 HCB emissions in North Macedonia 1990-2022 by sectors	
Figure 36 National total PCB emissions 1990-2022	103
Figure 37 PCB emissions in North Macedonia 1990-2022 by sectors	104

LIST OF APPENDIXES

APPENDIX 1: Key category analysis	307
APPENDIX 2: Summary source sectors use PM emission factors that include/exclude the	
component (see below)	317
APPENDIX 3 Further elaboration of completeness	330
APPENDIX 4 National energy balance 2022	331
APPENDIX 5 Useful information - Nomenclature for reporting format (NFR) - Format	for reporting
under the UNECE/LRTAP convention for 2022	333

EXECUTIVE SUMMARY

EXECUTIVE SUMMARY

Republic of North Macedonia has an emission inventory reporting obligation towards the Convention on trans-boundary air pollution (CLRTAP) and its eight protocols as well as to the international organizations such as the European environmental agency (EEA). The reporting obligations to the relevant international organizations and to the Executive body (EB) of the LRTAP convention are set down in Article 27-d of the Law on ambient air quality (LAAQ)¹.

As a party to the UNECE/LRTAP convention and its protocols Republic of North Macedonia is required to annually report data on emissions of air pollutants covered by the Convention and its protocols. These are the main pollutants: nitrogen oxides (NOx), sulfur dioxide (SO₂), non-methane volatile organic compounds (NMVOC), ammonia (NH₃), persistent organic compounds (POPs) and heavy metals (HM). To be able to meet the obligations, Republic of North Macedonia compiles annually an emission inventory and reports the base year emissions (1980, 1987, 1988 and 1990) in accordance with the protocols' obligations.

This report is compiled according to the Annexes 2023 Reporting Guidelines under the UNECE/LTRAP convention and its protocols, which define the standards for the national emission inventory². The country has also used the latest emissions reporting template for this reporting round.

The report contains eleven chapters, five appendixes and references. The content was reconstructed to achive compliance with Recommended structure for the Informative Inventory Report which was updated in 2021. The chapter introduction provides general information on the inventory preparation background, key source analysis, methodology and data sources used, QA/QC and completeness. The chapter Trend presents trends on different pollutants and discusses the main reasons for incline and decline of the values. Chapters 4-8 include detailed information on activity data emission factors used per Nomenclature for reporting (NFR) source category. This report contains subchapters on sourcespecific uncertainty analysis, QA/QC, recalculations, and planned improvements. The chapter Projections gives information on the current situation and planned activities regarding the obligation set down in the current Gothenburg protocol. Chapters on reporting LPS and gridded data are referring to preparation and reporting of LPS and gridded data. Sources used for the gathering of the activity data and information are presented in Reference chapter. The Appendix chapter has 5 Appendixes; the first one is on Key category analysis, the second is on summury whether source sector use PM emission factor that include/exclude condensable component, then Appendix 3 which refers to further elaboration of complitness. Preliminary Energy balance for 2022 is presented in Appendix 4, while Appendix 5 refers to Additional information, here, the emissions for 2022 which are reported in the NFR reporting format are presented. Appendices 6 and 7 form the Guideance are optional and are not part of the IIR.

Law on Ambient Air Quality (Official Gazette of RM No. 67/2004, 92/2007, 83/2009, 35/10, 47/11, 100/12, 163/13, 10/15, 146/15, 151/21)

 $^{{}^2\}underline{\text{https://www.ceip.at/reporting-instructions/annexes-to-the-2023-reporting-guidelines}}$

1.1. Summary of the main differences in the inventory since the last submission

This report contains emissions of the whole time series 1990-2022. The submissions prior to 2004 and some of the following years included data on emissions of the basic pollutants as the country was not in position to report for the whole reporting period.

For the preparation of the 2016 and 2017 emission inventory submission and Informative Inventory Reports (IIRs) in those years, the Ministry of Environment and Physical Planning (MEPP) was supported by Austrian experts engaged within the framework of the EU funded Twinning Project "Further strengthening the capacities for effective implementation of the acquis in the field of air quality" (MK 12 IB EN 01) which was finalized in January 2017. Starting from 2018, the reporting has been conducted by an established national expert emission inventory team. However, in comparison to the previous IIR, the quality control of the inventory has been improved in general. In this reporting round recalculations were made mainly due to remarks received from the Stage 3 review report in 2020 and sectortial Stage 3 review report for agriculture sector³, final activity data from the Energy balance and revised activity data from the MAKSTAT database⁴. The major recalculations were done due to use of EF from EMEP/EEA Guidebook. New categories were not introduced in this reporting round, however data analysis and data gathering for solvent sector were carried out.

The report presents trend analysis of the country's data for the period 1990 – 2022. The evaluation of the status of the emission trends is based on emission inventories and key source analysis. Generally, the main reason for reduction of the main pollutants is reduced use of coal for electricity production, as well as closure of installations or reduced production in the sector industry. Furthermore, emission reduction is also due to the introduction of BAT in major installations as well as the increase of use of gas and pellets and decrease of solid fuels in the category 1.A.4.

A decreasing trend is noticed for NOx and SOx emissions starting from 2011. The reduction of NOx is a result of the modernization of plants and extended working lifetime. Additionally, the reduced operating hours of the power plant REK Oslomej from twelve to few months per year, and the decrease in coal consumption including gasification of the heating plant Toplana Zapad has supported the reduction of NOx. With regards to SOx emissions, the trends vary and depend on the coal consumption considering that electricity production is the main source for SOx emissions. Desulfurization units are still not in place in this installation, so mainly SOx emissions depend on the content and quantity of the consumed coal. The trend was decrising until 2017 and in the last few years emission have incrised, however, the consumption of coal and content of sulfur is not the reason for increasing the Sox emissions. Therefore, for 2022, SOx emissions are calculated with use of EF since mounthy measurements are not representative.

The trend on NMVOC emissions is variable. These emissions are coming from different sectors but mainly Industry and Other sector, and there is slight reduction and stable trend in the last few years.

³https://www.ceip.at/fileadmin/inhalte/ceip/00 pdf other/2020 s3/mk s3 rr 2020 final.pdf/ https://webdab01.umweltbundesamt.at/download/review/MK/2023/MK 2023 Stage3RR FINAL.pdf?cgiproxy skip=1

⁴ MAKSTAT database - http://makstat.stat.gov.mk/PXWeb/pxweb/en/MakStat/?rxid=46ee0f64-2992-4b45-a2d9-cb4e5f7ec5ef

The trend of ammonia emissions is constantly decreasing (44% compared to 1990), which is related to decreasing livestock numbers due to the trend of moving of people from rural to urban areas and implementation of Best available technics which refer to the bigger farms for swines and polutry.

Table 1 Emission trends 1990 – 2022 for the main air pollutants and CO

			Emission in kt		
Year	NOx	NMVOC	SO ₂	NH₃	СО
1990	45.66	48.42	112.15	14.78	133.11
1991	37.80	42.39	91.21	13.94	112.21
1992	39.63	44.27	88.39	13.97	124.04
1993	41.10	47.17	90.90	14.19	133.88
1994	36.92	40.96	90.18	14.17	121.42
1995	39.47	45.26	96.54	13.96	125.78
1996	38.72	43.72	90.42	12.91	123.74
1997	38.05	45.03	94.76	12.51	126.99
1998	43.32	44.93	109.29	12.24	129.23
1999	40.58	45.77	99.24	12.36	132.36
2000	43.92	47.46	106.18	12.25	145.04
2001	40.90	41.05	108.23	11.73	114.29
2002	40.95	38.07	96.14	11.13	116.10
2003	35.96	38.04	94.76	11.01	116.93
2004	37.20	38.36	95.63	11.08	121.71
2005	35.07	27.32	94.78	10.61	75.16
2006	34.96	28.59	93.13	10.88	70.90
2007	38.04	29.34	98.48	10.72	71.90
2008	33.97	29.17	76.83	10.65	67.23
2009	34.91	27.27	103.05	9.87	63.37
2010	36.38	28.56	85.63	10.06	62.51
2011	38.74	29.20	103.39	10.38	64.17
2012	36.58	29.34	91.30	9.56	66.75
2013	29.02	28.93	82.03	9.55	64.36
2014	26.39	28.70	82.69	9.61	62.15
2015	21.67	28.20	75.00	9.57	60.19
2016	24.79	27.87	63.27	9.72	63.23
2017	23.47	28.42	54.72	9.66	55.58
2018	22.71	27.72	59.80	9.18	55.13
2019	23.27	27.41	115.42	7.96	55.89
2020	20.15	26.18	93.43	8.13	51.34
2021	21.07	25.85	88.59	7.60	52.78
2022	22.70	26.11	90.57	8.31	49.88

Trend 1990-2022	-50%	-46%	-19%	-44%	-63%
-----------------	------	------	------	------	------

The trend of the particulates is variable with inclines and declines due to variable operation of the installations for ferroalloys production as one of key sources in the national total particulates' emissions. The contribution from the 1.A.4 Other Sectors (residential heating) has changed due to introduction of clean fuel; however, biomass remains the main fuel used for household heating. The main reason for the decreasing trend and the reduction of around 71-74% in total of the particulates in 2022 compared to 1990, is the reduced production of ferroalloys in the country. The calculated PM2.5, and BC emissions in 2022 are reduced compared to 2021, by 4 and 6 % respectively while PM10 and TSP are slighty increased by 0.5 and 2%.

Table 2 Emission trends for particulate matter 1990-2022

v	Emissions				
Year	PM2.5 [kt]	PM10 [kt]	TSP [kt]	BC [kt]	
1990	32.61	48.01	60.99	3.03	
1991	28.56	42.10	53.24	2.64	
1992	34.91	50.44	62.45	3.31	
1993	31.25	44.80	55.81	2.93	
1994	29.21	42.38	53.25	2.67	
1995	29.49	43.00	54.23	2.70	
1996	32.42	47.43	60.00	3.02	
1997	31.50	46.05	57.87	2.87	
1998	35.91	52.56	66.18	3.30	
1999	31.11	45.07	56.88	2.83	
2000	29.99	43.51	57.12	2.73	
2001	18.55	28.01	37.08	1.47	
2002	19.07	28.42	37.02	1.63	
2003	29.34	42.29	53.14	2.60	
2004	31.72	45.78	57.56	2.87	
2005	24.06	37.22	48.59	2.43	
2006	21.67	33.82	44.18	2.16	

	Emissions							
Year	PM2.5 [kt]	PM10 [kt]	TSP [kt]	BC [kt]				
2007	17.39	27.63	36.63	1.76				
2008	18.11	28.26	37.51	1.86				
2009	12.81	22.17	31.86	1.24				
2010	15.86	28.16	35.29	1.65				
2011	21.71	35.33	47.62	2.15				
2012	21.41	34.28	46.23	2.19				
2013	23.73	37.06	50.31	2.44				
2014	17.05	26.64	37.17	1.76				
2015	14.71	22.16	27.78	1.47				
2016	12.98	19.58	24.69	1.41				
2017	8.94	14.14	18.39	1.02				
2018	8.62	14.40	17.51	0.98				
2019	8.94	13.88	17.87	1.03				
2020	8.84	13.68	17.59	1.01				
2021	8.79	13.47	17.55	1.04				
2022	8.41	13.54	17.93	0.97				
	-74%	-72%	-71%	-68%				
Trend 1990–2022								

The concentrations of Pb have decreased significantly starting from 2003, mainly because of the closure of the smelter company "Zletovo" – Veles and the use of unleaded gasoline in transportation. The closure of the smelter company is also manifested in declined emissions of Hg, Cd and PCBs. Additionally, the reduction of these pollutants' emissions has been positively influenced with the introduction of unleaded petrol and BAT in the installations.

Table 3 Emission trends for heavy metals 1990-2022

Vasa		Emissions							
Year	Cd [Mg]	Hg [Mg]	Pb [Mg]						
1990	1.61	0.67	232.53						
1991	1.51	0.62	196.71						
1992	1.46	0.57	227.59						
1993	1.06	0.54	212.78						
1994	1.02	0.46	203.78						
1995	2.11	0.48	222.28						
1996	2.32	0.54	229.66						
1997	1.15	0.57	244.69						
1998	1.39	0.63	259.96						

Voor		Emissions	
Year	Cd [Mg]	Hg [Mg]	Pb [Mg]
1999	1.07	0.57	208.31
2000	0.93	0.59	195.49
2001	0.82	0.62	172.39
2002	0.81	0.65	170.79
2003	0.60	0.49	131.99
2004	0.54	0.48	45.69
2005	0.28	0.36	6.45
2006	0.26	0.37	7.01
2007	0.26	0.40	7.50
2008	0.26	0.38	6.43
2009	0.25	0.33	5.72
2010	0.25	0.34	5.97
2011	0.26	0.38	6.49
2012	0.27	0.36	5.38
2013	0.24	0.31	4.23
2014	0.24	0.31	4.72
2015	0.24	0.30	4.45
2016	0.24	0.27	2.77
2017	0.22	0.26	2.62
2018	0.22	0.23	2.71
2019	1.61	0.67	232.53
2020	1.51	0.62	196.71
2021	1.46	0.57	227.59
2022	1.06	0.54	212.78
Trend 1990–2022	-86%	-71%	-99%

Regarding PAHs the trends are variable but still decreasing trend can be noticed from 2005 onwards. The largest source of emissions for these pollutants is the energy sector (mainly residential heating) with a share of 76%. Regarding PCB and HCB, we can notice decreasing trend due to emission reduction coming from the metal production. The trend of PCDD/F depends mainly on combustion of fuels as well as waste incineration activities. Emissions are increased in 2000 due to introduction of medical waste incineration activity but reduced in 2018 due to installation of dust filter. High levels before 2000 are due to higher solid fuel consumption.

Table 4 Emission trends for POPs 1990-2022

		Emi	ssions	
Year	HCB [kg]	PCDD/F [g – I TEQ]	PAHs [t]	PCB [kg]
1990	44.29	19.81	7.17	381.18

		Emis	ssions	
Year	HCB [kg]	PCDD/F [g - I TEQ]	PAHs [t]	PCB [kg]
1991	39.22	17.62	6.38	382.73
1992	25.83	17.70	6.79	382.95
1993	24.18	17.29	7.24	369.80
1994	25.04	15.87	6.68	340.60
1995	18.63	18.91	6.78	355.78
1996	19.70	18.73	6.28	384.21
1997	27.89	16.00	6.52	396.25
1998	29.34	17.60	7.19	403.01
1999	53.97	17.18	7.20	366.49
2000	38.32	23.93	8.17	342.85
2001	34.15	25.40	6.57	332.37
2002	52.68	27.01	6.59	330.10
2003	42.98	28.01	7.25	287.40
2004	8.52	30.63	7.31	240.53
2005	7.54	26.87	4.84	207.01
2006	11.67	25.20	4.95	207.78
2007	8.87	26.56	5.14	208.58
2008	7.74	25.87	4.82	208.28
2009	8.28	27.34	4.16	208.07
2010	9.58	29.55	4.47	208.85
2010	10.50	35.77	4.68	209.21
2012	9.47	38.99	5.13	209.19
2012	6.35	40.11	4.87	209.02
2013	4.19	39.99	4.69	209.48
2014	0.96	49.52	4.75	216.33
2015	0.77	51.12	4.69	220.78
221-	2.06	51.53	3.99	228.69
2017	1.53	8.96	3.94	236.92
	4.43	9.49	4.26	238.14
2019	0.16	8.76	3.91	236.77
2020 2021		9.43		
2021	0.16 0.15	8.50	4.15 3.61	238.29 242.31
Trend 1990–2022	-45%-100%	-57%	-50%	-36%

The main inconsistency of the trends origin from the Transport sector is due to the use of different calculation methodology (Tier 1 for the calculation of emissions in the period 1990-2004 and Tier 3 for the calculation of emissions in the period 2005-2022). The COPERT V has been established during ther three TAEIX expert missions carried out in the period October – December 2020. Within this project 2005-2019 transport emissions were calculated. The emissions coming from transport in 2020-2022, were calculated by the national transport expert.

1.2. Priorities for improvement

Since emissions from the Transport sector for period 2005-2022 have been calculated using the Tier 3 method using Copert V model, this method would be used in the forthcoming year for calculation of historical emissions coming from this sector to secure consistency for the whole reporting period. This is important since the Transport sector is one of the key sources of CO and NOx national emissions. The second national priority is the use of Tier 2 in 1.A.4 sector. The combustion in households and administrative capacities is one of the major emission sources for several pollutants especially for particulate matter, which is a critical pollutant in the country. The National expert time has analysed the given proposals in the EMEP Guidebook and avalible national data but due to limited set of data per type of stove the introduction of Tier 2 level can be implemented with technical support. EU 4 Green project has also made some improvement of inventory for this sector; however no data were delivered during preparation of this report.

QA/QC procedures are continuously implemented but there is a need of further trainings, improvement of the implementation of these procedures, calculation of as well as the use of uncertainty analysis. There is a need to use Tier 2 in most solvents and agriculture sectors but due to the need of expert trainings these improvements are planned to be carried out in the forthcoming project in the frame of IPA II program. No trainings of these type were performed during the previous year. Some activity data were gatherd for NFR categories in solvent sector NFR categories 2D3i and 2G and emissions will be reported next year. Categories in solvent sector are also planned to be improved during next technical IPA II project.

1.3. Information on recalculation – main reasons for recalculations

In the Energy sector, the emissions for the year 2021 were recalculated, using final activity data from the energy balance regarding fuel consumption. Change of EF factor due use of GB 2023 brought recalculation in the following categories: 1.A.4, 1.B.2.v and 3.B. In 2 - Industry and product use sector recalculations were carried out due to changes in activity data in several categories. No recalculations were done in 5 Waste sector.

1.4. Explanation of differences between reported national totals

National totals are reported for the entire territory. There are no differences in national totals reported in the NFR tables.

1.5. Clarification of the reason for differences in reported national totals for the entire territory with NECD report

As we are not a Member of the European Union, we are not obliged to report emissions under the EU's National Emissions Ceiling Directive (NECD). However, the NEC directive 2001/81/EC has been transposed in the national legislation and national emission ceilings for NOx, NMVOC, SOx and NH₃ have been defined. The new NEC Directive (2016/2284/EU) on the reduction of national emissions of certain atmospheric pollutants, amending Directive 2003/35/EC and repealing Directive 2001/81/EC will be transposed in the Law on ambient air quality and sub legislation as part of a technical project, which is programed in IPA 2 program "Support in implementation of the air quality directives", that is

planned to start at the end of 2024. However, based on the regular preparation of the emission inventory, the gridded data and LPS data starting from and the annual IIR, it can be as certained that several obligations coming from the new NEC directive are already implemented by our country.

2.1. National Inventory background

International commitments

Reporting of emission data to the Executive Body (EB) of the Convention on Long-range Trans-Boundary Air Pollution (CLRTAP) is required to fulfill the obligations referring to the strategies and policies in compliance with the implementation of Protocols under the Convention. Parties should use the reporting procedures and are required to submit annual national emissions of SO₂, NO_X, NMVOC, CO and NH₃, particulate matter (PM), various HM and POPs.

The United Nations, Economic Commission for Europe (UNECE), adopted the LRTAP Convention in 1979. The LRTAP Convention came into force in 1983 and it has been extended by eight specific protocols. The status of ratification to LRTAP Convention and its Protocols for the Republic of North Macedonia is shown below:

- Convention on Long-Range Trans boundary Air Pollution (LRTAP) (Geneva, 1979). The
 Convention was ratified by means of the Law on Ratification ("Official Gazette of the SFRY"
 No. 11/86). The Convention was taken over by the Republic of North Macedonia by means of
 succession with the date of effect of 30.12.1997.
 - Law on Ratification of the Protocol to the 1979 Convention on Long-Range trans boundary Air Pollution on long-term financing of the Cooperative Program for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe (EMEP) ("Official Gazette of the Republic of Macedonia" No.24/2010);
 - Law on Ratification of the Protocol to the 1979 Convention on Long-Range trans boundary Air Pollution on reduction of sulfur emissions or their trans boundary transmission by at least 30 percentages ("Official Gazette of the Republic of Macedonia" No.24/2010);
 - Law on Ratification of the Protocol to the 1979 Convention on Long-Range trans boundary Air Pollution on the control of nitrogen oxides or their trans boundary fluxes ("Official Gazette of the Republic of Macedonia" No. 24/2010);
 - Law on Ratification of the Protocol to the 1979 Convention on Long-Range trans boundary Air Pollution on the control of volatile organic compounds or their trans boundary fluxes ("Official Gazette of the Republic of Macedonia" No. 24/2010);
 - Law on Ratification of the Protocol to the 1979 Convention on Long-Range trans boundary Air Pollution concerning further reduction of sulfur emissions ("Official Gazette of the Republic of Macedonia" No.24/2010).
 - Law on Ratification of the Protocol to the 1979 Convention on Long-Rang trans boundary Air Pollution on heavy metals emissions ("Official Gazette of the Republic of Macedonia" No.135/2010).
 - Law on Ratification of the Protocol to the 1979 Convention on Long-Rang trans boundary Air Pollution on persistent organic pollutants ("Official Gazette of the Republic of Macedonia" No.135/2010).
 - Law on Ratification of the Protocol to the 1979 Convention on Long-Rang trans boundary Air Pollution to abate acidification, eutrophication, and ground-level ozone ("Official Gazette of the Republic of Macedonia" No.135/2010).
- Regarding the Gothenburg Protocol, negotiations were ongoing in the period 2011-2014, on the proposed figures on the base year emission levels (1990 national emissions) and national emission ceilings (2010 national emissions). The Executive Body of the Convention on its 32nd Meeting,

decided to accept the last proposed figures for Annex II of the Gothenburg Protocol and Annex II of the Protocol on sulfur of 1994. With the adoption of the proposed amendments to Annex II of the Gothenburg Protocol, in September 2014, Republic of North Macedonia became a full Party to these protocols as well as first Party to the among developed countries. Republic of North Macedonia will consider ratification of the amendments of the protocol after calculation of emission reduction commitments which activity is planned to be carried out in the same project.

Status of ratification of the protocols under CLRTAP is presented in the table below.

Table 5 Status of ratification of the protocols under CLRTAP

Tools of	UNECE Convention on Long-Range trans boundary Air Pollution (LRTAP)	Parties	entered into force	Signed (S) / Ratified (R) / Succession (d) / Accession (a) by North Macedonia
1979	Geneva Convention on Long-Range trans boundary Air Pollution		16.03.1983	30 Dec 1997 (d).5
1984	Geneva Protocol on Long-term Financing of the Cooperative Program for Monitoring and Evaluation of the Long-Range Transmission of Air Pollutants in Europe (EMEP)	47	28.01.1988	10 Mar 2010 (a)
1985	Helsinki Protocol on the Reduction of Sulfur Emissions or their trans boundary Fluxes by at least 30 per cent	25	02.09.1987	10 Mar 2010 (a)
1988	Sofia Protocol concerning the Control of Emissions of Nitrogen Oxides or their trans boundary Fluxes	35	14.02.1991	10 Mar 2010 (a)
1991	Geneva Protocol concerning the Control of Emissions of Volatile Organic Compounds or their trans boundary Fluxes	24	29.09.1997	10 Mar 2010 (a)
1994	Oslo Protocol on Further Reduction of Sulfur Emissions	29	05.08.1998	5 Jun 2014 (a)
1998	Aarhus Protocol on Heavy Metals	31	29.12.2003	1 Nov 2010 (a)
	Aarhus Protocol on Heavy Metals, as amended on 13 December 2012			
1998	Aarhus Protocol on Persistent Organic Pollutants (POPs)	33	23.10.2003	1 Nov 2010 (a)
	Aarhus Protocol on Persistent Organic Pollutants, as amended on 18 December 2009 6			
1999	Gothenburg Protocol to Abate Acidification, Eutrophication and Ground-level Ozone	31	17.05.2005	5 Jun 2014 (a)
	Gothenburg Protocol to Abate Acidification, Eutrophication and Ground-level Ozone, as amended on 4 May 2012 ⁷			

In the context of air pollution and Climate Change the Republic of North Macedonia has ratified the following conventions:

 United National Framework Convention on Climate Change (UNFCCC) (New York, 1992). The Convention was ratified by means of the Law on Ratification ("Official Gazette of RM" No. 61/97) and entered into force in Republic of North Macedonia on 28.04.1998.

 $^{{}^{5}\}underline{https://treaties.un.org/Pages/ViewDetails.aspx?src=TREATY\&mtdsg_no=XXVII-1\&chapter=27\&clang=_en}$

⁶http://www.unece.org/fileadmin/DAM/env/lrtap/full%20text/ece.eb.air.104.e.pdf

⁷http://www.unece.org/fileadmin/DAM/env/documents/2013/air/eb/ECE.EB.AIR.114_ENG.pdf

- Kyoto Protocol under the United Nations Framework Convention on Climate Change the Republic of North Macedonia. The Protocol was ratified by means of the Law on Ratification ("Official Gazette of RM" No. 49/04).
- Stockholm Convention on Persistent Organic Pollutants. Republic of North Macedonia signed the Convention in Stockholm, Sweden, on 22.05.2001. The Convention was ratified by means of the Law on Ratification ("Official Gazette of R.M. No.17/04).
- Vienna Convention for the Protection of the Ozone Layer (Vienna, March 1985). The Convention was ratified by means of the Law on Ratification ("Official Gazette of SFRY No.1/90). Republic of North Macedonia has taken over by means of succession on 10.03.1994.
 - Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal, September 1987). The Protocol was ratified by means of the Law on Ratification ("Official Gazette of SFRY No.16/90). Republic of North Macedonia has taken over by means of succession on 10.03.1994.
 - The Amendment to the Montreal Protocol on Substances that Deplete the Ozone Layer-London. The Protocol was ratified by means of the Law on Ratification ("Official Gazette of R.M. No.25/98).
 - The Amendment to the Montreal Protocol on Substances that Deplete the Ozone Layer-Copenhagen. The Protocol was ratified by means of the Law on Ratification ("Official Gazette of R.M. No.25/98).
 - The Amendment to the Montreal Protocol on Substances that Deplete the Ozone Layer-Montreal. The Protocol was ratified by means of the Law on Ratification ("Official Gazette of R.M. No.51/99).
 - The Amendment to the Montreal Protocol on Substances that Deplete the Ozone Layer-Beijing, 1991. The Protocol was ratified by means of the Law on Ratification ("Official Gazette of R.M. No.13/02).
- Convention on Environmental Impact Assessment in a trans boundary Context (Espoo, February 1991). The Convention was ratified by means of the Law on Ratification ("Official Gazette of R.M. No.44/99).
- Convention on Access to Information, Public Participation in Decision-Making, and Access to Justice in Environmental Matters (Aarhus Convention). The Convention was ratified by means of the Law on Ratification ("Official Gazette of R.M. No.40/99).
- Basel Convention on the Control of trans-boundary Movements of Hazardous Wastes and Their Disposal. The Convention was ratified by means of the Law on Ratification ("Official Gazette of R.M. No.49/97).
- Minamata convention on mercury. The convention has been signed on 24.07.2014.

At its thirty-second session.8 (Geneva, 9-13 December 2013), the Executive Body (EB) for the LRTAP Convention adopted revised guidelines for reporting emissions and projections data under the Convention (ECE/EB.AIR/122/Add.1, decisions 2013/3 and 2013/4). Revised 2021 Reporting guidelines and the Annex for IIR content is followed in this report.

National legislation

In accordance with the Law on ambient air quality Article 27-g (2), the Air Pollutant Emissions inventory for the territory of Republic of North Macedonia is performed through:

- 1) Calculation of emission quantities of pollutants in the air in Republic of North Macedonia.
- 2) Preparation of report on the annual emission inventory with emission projections.

⁸http://www.unece.org/index.php?id=33605#/

3) Preparation of report on implementation of emission reduction measures to fulfill the requirements toward the 1979 Convention on Long-Range trans-boundary Air Pollution and its amendments (hereinafter: LRTAP convention).

The reporting obligations to the European Environmental Agency and other relevant international organizations and to the Executive body of the LRTAP convention are set down in Article 27-d of the LAAQ.

The methodology for preparation of the inventory is prescribed in the Rulebook on the methodology for inventory and establishment of the levels of polluting substances emission into the atmosphere in tons per year concerning all types of activities, as well as other data to be submitted to the European Monitoring and Evaluation Program (EMEP), Official Gazette of the Republic of Macedonia No. 142/079.

The national emission ceilings for 2010 according to the old NEC Directive are defined in the Rulebook on the amounts of emission ceilings of polluting substances for the purpose of setting projections for a certain period concerning the polluting substances emission reduction at annual level¹⁰.

Amendments of these two rulebooks in compliance with the National Emissions Ceilings (NEC) Directive (2016/2284/EU) are envisaged in the forthcoming project in the frame of IPA II program that should start at the end of this year.

Practical implementation and development of the inventory work

In 2005 Republic of North Macedonia via the Ministry of Environment and Physical Planning (MEPP) established a National Methodology for Air pollutants emission inventory. This was part of the implementation of the EMEP Program, for the purpose of the implementation of the CLRTAP in the Republic of North Macedonia, carried out through European Topic Centre on Air and Climate Change (ETC/ACC) with financial support by the Community Assistance for Reconstruction Development and Stabilization (CARDS) Program. The objective of the project was to establish an air pollutant emission inventory and reporting system for Republic of North Macedonia that complies with the international requirements of the European Union (EU) and adaptation towards comparability with the data of the EU Member States. In 2006, the consulting company TEHNOLAB Ltd authorized by the MEPP, has prepared the first Air pollutant emission Inventory and Informative Inventory Report (IIR) which covered information on air pollutant emissions for year 2004. and has been based EMEP/EEA Guidebook for 2006 (in the further text GB 2006). The history of the development of the inventory is described below.

For the 2005, 2006, 2007, 2009 inventory years, according to the requirements of CLRTAP, MEPP has updated the air pollutant emission data only for the three main SNAP.¹³ sectors (1, 2 and 3), without submitting an IIR Report.

⁹ Rulebook on the methodology for inventory and establishment of the levels of polluting substances emission into the atmosphere in tons per year concerning all types of activities, as well as other data to be submitted to the European Monitoring and Evaluation Program (EMEP) (Official Gazette of RM no.142/2007)

¹⁰ Rulebook on the amounts of emission ceilings of polluting substances for the purpose of setting projections for a certain period concerning the polluting substances emission reduction at annual level (Official Gazette of RM No.2/2010,156/11)

¹¹ CLRTAP- Macedonia's Informative Inventory Report, 2004, MEPP, March 2006

¹² EMEP/CORINAIR Emission Inventory Guidebook - 2006

¹³SNAP Selected Nomenclature on Air Pollutants. https://en.eustat.eus/documentos/elem_13173/definicion.html

In 2007 Republic of North Macedonia complying with CLRTAP as part of the national legislation has enforced the "Rulebook on inventory making and establishment of the level of polluting substances emission in ambient air in tons per year for all types of activities, as well as other data to be delivered to the Environmental Monitoring Program of Europe (EMEP)".

In 2010, MEPP engaged the second time TEHNOLAB Ltd, a consulting company, to prepare a complete Air pollutant emission inventory and IIR for year 2008 emissions.¹⁴.

In 2011 air pollutant emissions data (only for the three main SNAP sectors (1, 2 and 3)) for 2009 were updated without submission of an IIR Report.

Republic of North Macedonia, in 2011 participated in Stage 3 in depth review.¹⁵ of Air Emission Inventories and replied promptly on the questions sent by the Expert review team (ERT).

Review made by ERT, as well as the sent questions, were of great use and importance for further development and improvement of the Macedonian air pollutant emission inventory in accordance with GB 2009. Hence, recommendations from Stage 3 review were considered in the Inventory submissions in the following years.

In relation to air pollutant emissions inventory submission in 2012, MEPP secured financial resources for both a full inventory and preparation of the report, improved in line with the Stage 3 Review report recommendations. MEPP involved Tehnolab Ltd, to carry out the inventory and the preparation of IIR for 2010. This Inventory was improved in accordance with some remarks given in the Stage 3 review report, including full series of heavy metal emissions.

In 2013, the air pollutant emission inventory for 2011 was extended for the first time to cover emissions of PM2.5, PM10, dioxins and furans. Emissions for the baseline years 1980 (SOx), 1987 (NOx), 1988 (NMVOC) and 1990 (POPs) were delivered to the Convention on Long-range transboundary Air Pollution in accordance with the requirements of protocols.

In 2014 and 2015 the air pollutant emission inventory for all pollutants was prepared. A calculation for the missing years and recalculation for the previously reported years was carried out, including calculation of the emissions in the baseline years of 1980 (SOx), 1987 (NOx), 1988 (NMVOC) and 1990 (POPs) due to improved activity data, as well as in accordance with the updated version of the EMEP/EEA Emission Inventory Guidebook 2013.¹⁷ for most of the source categories.

The IIR submitted in 2016 covered information on anthropogenic emissions of air pollutants for 2014 for all pollutants, the entire time series starting from 1990, and it included documentation of methods, data sources, completeness of the Inventory, quality assurance and quality control (QA/QC) activities carried out, as well as sectorial methodologies for emission estimations by category (NFR). Emission data, activity data and emission factors are presented in separate chapters of this IIR. NFR 14-2 tables are used to report the emissions.

¹⁴CLRTAP- Macedonia's Informative Inventory Report, 2008, MEPP, March 2010

¹⁵http://www.ceip.at/fileadmin/inhalte/emep/pdf/2011/MK_Stage3_Review_Report_2011.pdf;

¹⁶ EMEP/EEA air pollutant emission inventory guidebook - 2009

¹⁷ EMEP/EEA air pollutant emission inventory guidebook - 2013

In 2016, Republic of North Macedonia again participated in a Stage 3 in depth review of Air Emission Inventories. Based on this review, additional improvements were made in the inventory. The IIR, submitted in 2017 described these improvements and for the first time contained a quantitative uncertainty assessment. Furthermore, in most of the categories updated emission factors from the EMEP/EEA Emission Inventory Guidebook 2016 ¹⁸ were used. For the previous reporting round additionally in most of the categories, EMEP/EEA Emission Inventory Guidebook 2019 ¹⁹ and 2016 has been used, while older versions were rarely used due to limitation of activity data. The previous and in 2022 contained improved and final activity data considered in the revised MAKSTAT database, as well as improvement and additional categories were added according to Stage 3 review recommendations [3]. The present IIR submitted during this year conatin improments mostly due to use of final energy consumption data and some minor recalculations due to omitted formula linkage in the calculation file as well as use of EF from GB 2023. Some recommendations given for the agriculture sector in the Stage 3 review performed last year were included in this report. The overall view of the gradual improvement of the inventory work is presented in the following table.

Table 6 Development of the inventory work in North Macedonia

						S	ubm	issioı	n
Year of reporting	Inventory	Pollutant	Time series	Based on	Implemented by	NFR07	NFR09	NFR 14	IIR
2005	National Methodology for Air pollutants emission inventory Establishment of an emission inventory and reporting system	Basic pollutants /SNAP sector 1,2,3	2003	EMEP/CORINAIR Emission Inventory Guidebook - 3rd edition October 2002 UPDATE Emission measurements	MEPP	X			
2006	First Air pollutant emission Inventory according CORINAIR methodology and Informative Inventory Report (IIR)	Basic pollutants /all sectors	2004	EMEP/CORINAIR Emission Inventory Guidebook - 3rd edition October 2002 UPDATE Emission measurements	ETC/ACC. (EMEP Program) TEHNOLAB Ltd	Х			X

¹⁸ EMEP/EEA air pollutant emission inventory guidebook - 2016

¹⁹ EMEP/EEA air pollutant emission inventory guidebook - 2019

						S	ubm	issio	n
Year of reporting	Inventory	Pollutant	Time series	Based on	Implemented by	NFR07	NFR09	NFR 14	ä
2007	Rulebook on inventory making and establishment of the level of polluting substances emission in ambient air in tons per year for all types of activities, as well as other data to be delivered to the EMEP	Basic pollutants	2005		MEPP	X			
2008 and 2009	• Update	Basic pollutants SNAP sector 1, 2 and 3	On yearly base according to the rule n-2	EMEP/CORINAIR Emission Inventory Guidebook - 3rd edition October 2002 UPDATE Emission measurements	МЕРР		X		
2010	Air pollutant emission Inventory and IIR	Basic pollutants	2008		TEHNOLAB Ltd		X		Х
2011	Stage 3 in depth review Update	Basic pollutants SNAP sector 1, 2 and 3		EMEP/EEA GB 2009	MEPP & TEHNOLAB Ltd		Х		
2012	Inventory and preparation of the report	All including heavy metals (HM)	Full time series		MEPP & TEHNOLAB Ltd		X		Х
2013	 Air pollutant emission Inventory Emissions for the baseline years 1980 (SOX), 1987 (NOX), 1988 (NMVOC) and 1990 (POPs) 	All + HM including PM2.5, PM10, dioxins and furans		EMEP/EEA GB 2009	MEPP		X		
2014 2015	Recalculation including baseline years	All with exception of BC	Baseline years + 2012 and 2013	EMEP/EEA Emission Inventory Guidebook - 2009, 2013	MEPP			Х	

						S	ubm	issio	n
Year of reporting	Inventory	Pollutant	Time series	Based on	Implemented by	NFR07	NFR09	NFR 14	IIR
2016	 Recalculation of all pollutants, time series starting from 1990 documentation of methods, data sources, completeness of the Inventory, QA/QC, sectorial methodologies for emission estimations by category (NFR) 	All with exception of BC	1990 – 2014	EMEP/EEA Emission Inventory Guidebook - 2009, 2013	MEPP Twinning			X	X
2017	• Introduction of uncertainty trend analysis and key source analysis as well as QA/QC procedures implemented and improved, most of the Stage 3 review comments. ²⁰ implemented	All + BC	1990-2015	EMEP/EEA Emission Inventory Guidebook - 2009, 2013 and 2016	MEPP Twinning			X	X
2018	 Data quality improvement, introduction of new QA/QC procedures 	Emission inventory experts	1990- 2016	EMEP/EEA Emission Inventory Guidebook - 2009, 2013 and 2016	МЕРР			X	Х
2019	 Data quality improvement, introduction of new QA/QC procedures 	Emission inventory experts	1990- 2017	EMEP/EEA Emission Inventory Guidebook - 2009, 2013 and 2016	МЕРР			Х	Х
2020	Data quality improvement, introduction of new QA/QC procedures, Several NFR sectors added for first time, use of Tier 2 methodology in several categories, use of EF from 2019 GB.	Emission inventory experts	1990-2018	EMEP/EEA Emission Inventory Guidebook - 2009, 2013 and 2016, 2019	МЕРР			X	X

⁻

²⁰ <u>UNECE/CEIP/S3.RR/2016/Macedonia19/10/2016</u>

						S	ubm	issio	1
Year of reporting	Inventory	Pollutant	Time series	Based on	Implemented by	NFR07	NFR09	NFR 14	E E
2021	Data quality improvement, Inclusion of Stage 3 Review report, Several NFR sectors added for the first time	Emission inventory experts	1990- 2019	EMEP/EEA Emission Inventory Guidebook – 2019 (rarly older versions are used due to limitation of activity data)	МЕРР			X	X
2022	Data quality improvement	Emission inventory experts	1990- 2020	EMEP/EEA Emission Inventory Guidebook – 2019 (rearly older versions are used due to limitation of activity data)	МЕРР			X	X
2023	Data quality improvement	Emission inventory experts	1990- 2021	EMEP/EEA Emission Inventory Guidebook – 2019 (rearly older versions are used due to limitation of activity data)	MEPP			X	X
2024	Data quality improvement	Emission inventory experts	1990- 2022	EMEP/EEA Emission Inventory Guidebook – 2023 (rearly older versions are used due to limitation of activity data)	МЕРР			Х	X

2.2. **Institutional arrangements**

According to the Article 40 of the Law on environment (LE)21, the Macedonian Environmental Informative Center (MEIC), a department within the Ministry of Environment and Physical Planning (MEPP) is the Single National Entity (SNE) responsible for the preparation of emission inventories. MEIC within the MEPP has the overall responsibility and submits the inventory report to CLRTAP. Within the MEIC, experts from four different departments are contributing, whereby experts from the division of Analysis and Reporting are compiling and reporting the inventory.

Data needed for the preparation of the inventory are provided by either industrial operator, State statistical office (SSO), Ministry of Economy (MOE), Ministry of defense (MOD), Ministry of agriculture, forestry, and water supply (MAFWS), or Ministry of Interior (MOI) etc. MEPP has signed memorandum of understanding for data exchange with the SSO and starting from 2016 with MOI on detailed vehicles fleet data. MOI during 2022 has provided activity data per vehicle category for the 2022. Therefore, Tier 3 calculation methodology has been implemented for period 2005-2022.

²¹ Law on environment Official Gazette of RM num. 53/2005, 81/2005, 24/2007, 159/2008, 83/09, 48/10, 124/10, 51/11,123/12, 93/13, 44/15, 151/21

The other ministries / institutions mentioned above are delivering the data on voluntary basis and upon MEIC requirements. The plant operators are reporting the data due to their obligation under PRTR and national sub legislation under the Law on ambient air quality.

The institutional arrangements for the inventory system currently used in Republic of North Macedonia are presented in Figure 1. The Macedonian Environmental Informative Center (MEIC) within the MEPP has the overall responsibility and submits the inventory report to CLRTAP.

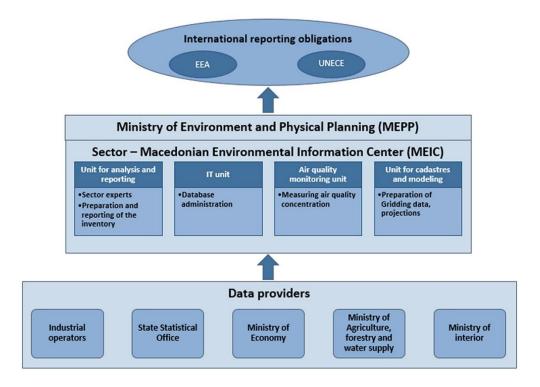


Figure 1 Institutional arrangements

2.3. Inventory preparation process

The preparation of the Inventory includes the following stages:

- a) Planning
- b) Preparation
- c) Data management
- d) Reporting



Figure 2 Scheme of inventory preparation process

a) Inventory planning

The planning of the Inventory includes organizational aspects, related to appointment of the team of key and deputy key experts within the department, description of specific tasks and responsibilities, development of operational procedures about data collection and data calculation on the activity rate and emission factors included in the database of the National Emission Inventory. Currently, seven persons are involved in the inventory work, but for only two of them the preparation of the emission inventory is primary task. Five of them are distributed as key experts and deputy experts between sectors, but since preparation of the inventory is not their main task, they need further training to be independent in the preparation of the sector inventory, which is currently done with the support of Energy expert acting as emission inventory coordinator. The Energy expert is also responsible for update of the NFR reporting tool, KCA, Trend analysis and NFR reporting table on yearly base. Further improvement and safe sustainability of the inventory will be entirely ensured by increasing of the trained staff and dedication of the experts to inventory work as their primary task. A document for the timeline of the inventory preparation has been prescribed and has been used by the experts within preparation of this inventory round.

b) Inventory preparation

In the context of this Inventory preparation, each of the experts is involved in the identification of the sources of pollution, definition of the relevant data sources and data collection (activity data). All other activities concerning the Inventory preparation and development have been organized through this approach.

As part of QA/QC procedure deputy experts per sectors have checked in more detail manner activity data and emissions calculations as well as links in the excel preparatory files prepared by the nominated key experts per sector according to the workflow matrix.

Identification of sources of pollution

In the framework of the Inventory preparation, great attention has been devoted to the identification of the sources of pollution. This was necessary for two basic reasons: the first is based on the

geographical position of the Republic of North Macedonia (e.g.: there are no sources of pollution of marine or river traffic), and the second on the level of industrial and economic development of the country (there are no nuclear power plants, gas turbines, etc.).

Data sources

Data from several sources have been used on the different sectors, including:

- Statistical Yearbooks of Republic of North Macedonia 1990-2020²²; (starting from 2000 data are available on web)
- MAKSTAT DATABASE from SSO.
- Publications published by SSO in different areas (Transport, Industry in the Republic of North Macedonia, Industry and Energy, Livestock, Agriculture and Forestry);
- Energy Balance of the Republic of North Macedonia by Ministry of economy²³
- Measurements data from the industrial operators and waste incineration plant
- International web page databases (FAO, Eurostat etc.).
- Data from relevant national ministries and agencies (MOD, PEMF, MAFWS and others)

c) Data management and processing

Emission factors and activity data for different source categories are collected and calculated in separate NFR excel tables, for the period from 1990 to 2022. NFR tables are categorized in separate folders (ENERGY, INDUSTRY and SOLVENT PRODUCT USE, AGICULTURE, WASTE, TRANSPORT, NATURAL SOURCES).

During each inventory preparation cycle, evaluation, and update of selected emission factors of previous years is conducted, if there is an available updated version of EMEP/EEA Guidebook. In this reporting round EF from GB 2019 were checked and excel calculations sheets and IIR tables were updated.

QA/QC activities include comparison of the value of input data with the previous year's value. If there are large deviations, the value was checked for errors such as typing or unit errors. If necessary, the primary data providers were contacted for an explanation.

The basic approach in the selection of the methodology used in the calculation of emissions and selection of emission factors for each source is driven by availability of activity data. The availability of data and possible time series inconsistencies are described for each source category in the sectorial chapters, further below. Mainly the problem is coming from the fact that data coming from the Statistical publications are not detailed enough. The last census was carried in 2021, however did not include detail data needed in different catagories. Additionally, compared to the other European countries, we have started with preparation of whole time series emission inventory for all pollutants only in 2014. These effects in use of different methodology in the older statistical yearbook, and higher use of data gap filling methods that result with trend inconsistency in some sectors, as well as higher uncertainty. However lately with introduction of MAKSTAT database the activity data are revised, more detail and historical data are introduced, which enable us to improve in this field.

²² http://www.stat.gov.mk/PublikaciiPoOblast.aspx?id=34&rbrObl=37

²³ http://www.stat.gov.mk/PrethodniSoopstenijaOblast.aspx?id=64&rbrObl=21

Considering such difficulties in the collection of data on activity rates, as well as the fact that Republic of North Macedonia does not yet have national emission factors with exception of those provided for the major industries, Tier 1 methodologies and the corresponding emission factors from GB 2023 were used to estimate emissions from most sources in this Inventory with exeption of some categories in which due to limitation of activity data, older versions of Guidebooks are used. Only in 1.A.1.and 2.C.2 implied emission factors are used. These factors were calculated based on emissions reported in the previous years and fuel used/production.

Calculation of emissions with use of Tier 2 method was carried out in the following sources: NFRs 1.B.1.a (Fugitive emission from solid fuels), 2.A.3 (Glass production), 2.D.3.a (Domestic solvent use including fungicides), 2.D.3.g (Chemical products), 2.D.3i and 2.G (Other solvents and product use) and 2.H.2 (Food and beverages industry), 5.A and 5.D.2, for the whole reporting period. Implied emission factors (IEFs) have been used in NFR categories 1.A.1.a (Public electricity and heat production), 2.A.1 (Cement production) 2.C.1 (Metal production) and 2.C.2 (Ferroalloy's production). Tier 2 has been also introduced in 2.C.5 (Lead production) and 2.C.6 (Zinc Production). Tier 3 method for calculation was used for calculation of NFR categories under 1.A.3.b for the period 2005-2022. Emission measurement data for NOx, CO, SOx and TSP considered as Tier 3 were used in the NFR category 1.A.1.a.

Regarding the specification of emission factors for certain number of emission sources, mainly for point sources (Facilities), data from the manual monthly and yearly emissions measurements of pollutant, measurements done with automated systems, carried out at the various facilities, has been used (see chapter References).

Detailed overview and explanation of activity data and emission factors for each of the NFR sectors are presented in Chapters 4.0 to 7.0.

d) Reporting

For reporting of emissions, data from separated calculated sheets tables per NFR, containing EFs, activity data and calculated emissions per pollutant, were linked to the NFR table for reporting. This was carried out with the support of a NFR Reporting Tool, which was developed within the EU Twinning project and implemented by an IT expert from MEPP. The NFR Reporting Tool transposes columns to rows, includes data analysis, and provides emission trends. NFR Reporting tool is linked with the NFR_14 reporting template and reporting towards UNECE and EEA is carried out within the given deadline. For this year the air emission inventory was reported on 14.02.2024 and the resubmission was carried out on 4.03.2024.

During the preparation of the current submission of Informative Inventory Report in 2018, the below listed guidelines were followed:

- Revised 2014 Reporting guidelines (ECE/EB.AIR.125);
- Annex II of the Guidelines Recommended structure for the Informative Inventory Report (IIR)
 Documentation of methods, trends, recalculations, activity data and other information relevant for understanding the inventory.
- EMEP/EEA air pollutant emission inventory guidebook 2009;
- EMEP/EEA air pollutant emission inventory guidebook 2013;
- EMEP/EEA air pollutant emission inventory guidebook 2016;
- EMEP/EEA air pollutant emission inventory guidebook 2019;
- EMEP/EEA air pollutant emission inventory guidebook 2023;

The structure of the above-mentioned guidelines was followed by the authors, to achieve transparency, consistency, completeness, comparability, and accuracy of reported emission data. This IIR as the previous one, was reported after the given deadline, namely in the beginning of April due to the expert's engagement in other duties. It is planned from the next submission to respect the given reporting deadline also for the IIR, but this is difficult due to the face that experts are involved in other tasks than inventory.

2.4. Methods and data sources

Methodology

The methodology of the Macedonian air pollutant emission inventory is based on the UNECE CLRTAP Reporting Guidelines and the EMEP/EEA Emission Inventory Guidebook 2023, targeting on transparency, completeness, consistency, comparability, and accuracy of emissions data. In cases where we are limited with activity data, emission factors from older EMEP/EEA Emission Inventory Guidebook have been used.

The calculation of emissions is based on activity data (AD), which represents the magnitude or volume of an activity generating emissions, while an emission factor (EF) is the mass of emissions per unit of activity. Activity data is either available from official statistics, from the industry of from special studies, inquiries or e.g., from the literature. Default emission factors presented in the Guidebook have been used in the calculation of emissions. In the future there is a need to develop national emission factors in some key sectors that would more accurately correspond to the national conditions.

Data sources

Activity data needed for emissions calculation are extracted from regular publications and databases of the State Statistical Office and other relevant governmental organizations and ministries, or also from the industry and inquiries carried out by MEIC. For sub-sectors and source categories, more detailed data are required than those published in official statistical reports, such as disaggregated energy balance, vehicle fleet etc. In the Table 7, the official activity data sources in relation to the NFR sectors are presented. The web pages for those data that are available are given in the chapter references. Data requested upon official letters or e-mails but are not available publicly are reported only here in the following table.

Table 7 Activity data sources

NFR Sector	Data source	Data provider
Energy	Statistical Yearly reports 1990-2022 [22] Energy balance 2009-2022 [23] Energy statistics for 2000-2010 [24] MAKSTAT database-Energy [25]	Ministry of economy MEPP State statistical office
Transport	State Statistical Office of the Republic of North Macedonia, Transport, and other communications, 2007-2015 [26], MAKSTAT database data on transport [27] MOI car fleet database 2005-2022	Ministry of Interior State statistical office

NFR Sector	Data source	Data provider
Industrial Processes	Industry in the Republic of North Macedonia, 2002-2007,2003-2003-2008,2004-2009,2005-2010,2006-2011,2007-2012,2008-2013,2009-2014, 2010-2015 [28] MAKSTAT database industrial data [29] Statistical Yearly reports 1990-2022 [22] Questionnaire for emissions in environment 2014-2022 http://minerals.usgs.gov/minerals/pubs/country/europe.html#mk [30]	State statistical office MEPP
Solvent and Other Product Use	State Statistical Office of the Republic of North Macedonia. Commodity international exchange in the Republic of North Macedonia, 2006-2015 [31] Industry in the Republic of North Macedonia, 2002-2007,2003-2003-2008,2004-2009,2005-2010,2006-2011,2007-2012,2008-2013,2009-2014, 2010-2015 [28] MAK STAT database on solvent [29] Statistical Yearly reports 1990-2022 [22] Questionnaire for emissions in environment -2014-2022 Data required from SSO for activity data through info email	State statistical office MEPP
Agriculture	State Statistical Office of the Republic of North Macedonia, Field crops, orchards and vineyards, 2007-2017 [32] Yearly Statistical reports 1990-2022 [22] State Statistical Office of the Republic of North Macedonia, Livestock, 2007-2015 [33] MAK STAT database agriculture [34] State Statistical Office of the Republic of North Macedonia, Forestry, 2000–2015 [35], Census of agriculture, 2007, Individual agricultural holdings grouped by total available land, by regions, 2008 [36]	State statistical office MAKSTAT database MAFWS FAO
Waste	Statistical Yearly reports 1990-2022 [22] Feasibility study on Drisla landfill, book 1of 2, General overview, Final report, August 2011 [37] "Drisla" landfill web page [38] Drisla, Yearly environmental reports, 2013, 2014, 2015, 2016,2017,2018 ,2019,2020,2021,2022 Data on treated communal water 1990-2022 reported by wastewater treatment plants. PRTR database in MEPP [39]	State statistical office Public enterprise "Drisla" landfill EUROSTATE Wastewater treatment plants
Natural sources	State Statistical Office of the Republic of North Macedonia, Forestry, 2007–2014 [35] Data on fires (burned area, burned forests) reported by Macedonian forest fires 1990-2022	State statistical office Public enterprise Macedonian forests

2.5. Key Categories

Following the encouragement from the last Stage 3 review, the update of the Key Category Analysis (KCA) was prepared on NFR subcategory basis for all pollutants and therefore is fully consistent with the analysis done by CEIP. The trend analysis was carried out as recommended in the Stage 3 review carried out last year for the first time and carried out during this year.

According to the UNECE CLRTAP Reporting Guidelines sources contributing to an accumulated 80% to total emissions are defined as key sources.

Furthermore, the section on emission trends (see chapter 3) has been included to the Macedonian IIR. Description of trends and main emission sources are available for all pollutants.

Identification of key source categories of individual pollutant was made using methodology that follows the quantitative Approach 1, described in "EMEP/EEA air pollutant emission inventory

guidebook 2016". As described in Approach 1, key categories are identified using a predetermined cumulative emissions threshold. Key categories are those which when summed together cumulatively add up to 80% of the total level.

The analysis of key sources in Republic of Macedonia includes pollutants under CLRTAP: pollutants which cause acidification, eutrophication, and Ground-level ozone (NOx, NMVOC, SOx, NH₃ and CO), Particles (TSP) and heavy metals (Pb, Cd, Hg, As, Cr, Cu, Ni, Se and Zn). Cumulative Table 8 presents the key sources for all reported pollutants. The key category analysis is following the KCA table sent by CEIP through the REPDAP.

The KCA table shows that the energy 1A1a and1A2gvii as well as road transport (1A3biii, 1A3bi and 11A2gviii) are main sources of NOx. Energy sector emissions are mainly from power plants using lignite. This sector is key category for SOx because of high content of sulphur in the dosmesic lignite used for electricity production. This source is key category for many metals like Hg, As, Cr, Ni and Se.

Domestic heating is key source for NMVOC but there are many sources which constitute key sources.

Agriculture is main source for ammonia especially 3B1a (diary cattle) and 3B3 swine and manure managamnet of soils like 3Da3 and 3Da1.

Combustion in residental combustion plants is main sources for particulates (PM10,PM2.5, TSP), BC, CO and HM (Zn and Cd) and POPs (PAHs, DIOX) pollutants. For HCB due to the closure of aluminium production installation, the key category is clinical waste incineration 5C1biii. The key categories for all air pollutants are presented in Table 8. Key categories for pollutants under CLRTAP for 2022 are in compilance with those calculated by CEIP and presented in Stage 2 review.

Table 8 Key categories for all air pollutants for 2022

Pollutant		Key categories 2021 (sorted from high to low contribution from left to right)										
NOx	1A1a	1A3biii	1A2gviii	1A3bi	1A2gvii						80.2%	
NMVOC	1A4bi	1B2av	2D3d	2D3d	2D3e	3B1a	3De	1B1a	1A3bv		80.2%	
SO ₂	1A1a										96.9%	
NH ₃	3B1a	3Da2a	1A4bi	3Da3	3B3	3Da1					82.6 %	
PM2.5	1A4bi	1A1a									83. 5%	
PM10	1A4bi	1A1a	3Dc								80.2%	
TSP	1A4bi	1A1a	3Dc	2A5b	2A5a						83.8%	
ВС	1A4bi	1A3biii	1A3bi	1A2gvi ii	1A2gvii						81.2%	
СО	1A4bi	1A3bi	5A i	1A2a							81.1%	
Pb	1A2a	2C1	1A4bii	1A2a	1A3bvi						82%	
Cd	1A4bi	1A1a	2C1								85.9%	
Hg	1A1a	1A2gviii	2C1	2K							83.0%	

Pollutant		Key categories 2021 (sorted from high to low contribution from left to right)											
As	1A1a	1A2gviii	1A2a	5C2	2C5							80.4%	
Cr	1A1a	1A4bi	1A3bvi	1A2a								81.2%	
Cu	1A3bvi											88.0%	
Ni	1A1a											90.0%	
Se	1A1a	1A4bi										98.9%	
Zn	1A4bi	1A1Aa	1A3bvi	1A2a	2C1							87.1%	
DIOX	1A4bi	2C1										83.4%	
PAH	1A4bi	1A2a										85.1%	
НСВ	5C1biii	1A4bi										96.0%	
PCBs	2K											85.7%	

2.6. QA/QC and Verification methods

QA/QC activities are part of the annual inventory preparation process as described under this chapter. A management process has been set up, defining roles and responsibilities. The inventory team in North Macedonia consists of seven experts, partly having double roles. The energy expert is also responsible for the QA/QC procedures and compiles the emissions for one sector and support industry and solvent expert (see Figure below).

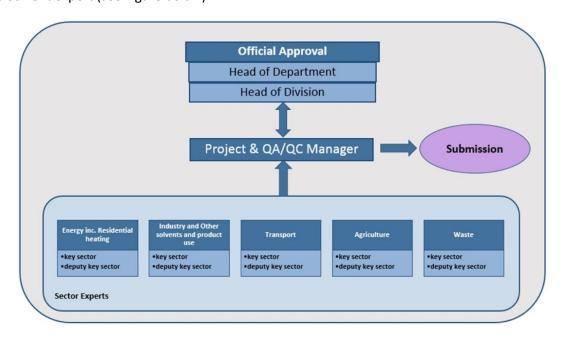


Figure 3 Roles in inventory preparation and submission

The sector experts are responsible for selection of methods. Collection of input data, emissions calculation as well as QC, are carried out at sector level. The project Manager oversees coordination of activities, timely preparation, and completeness of IIR, as well as cross-cutting tasks such as basic QC of report, implementation and maintaining of a QA/QC plan, review coordination within the team, as well as for key category analysis and of Review communication. The update of uncertainty analysis,

KCA, trend assessment and recalculations files are done by QA/QC Manager with support of the IT expert.

QA/QC Plan and quality objectives

A QA/QC plan still not developed due to limitation of time. The plan will lay down all procedural and technical issues to produce an inventory that complies with the reporting obligations. It will also include a list of data quality objectives, against which the Macedonian inventory can be measured, such as:

- Transparency
- Accuracy
- Completeness
- Consistency
- Comparability
- Timeliness

Progress in transparency and completeness as well as timeliness is analyzed annually. The analysis is carried out by counting the total number of data records, as well as those reported as "not estimated" and "included elsewhere" (for all air pollutants). Then the share of "NE" and "IE" to total data records is determined. The results of this year's analysis, and a comparison with the previous submission is shown in Table below. As shown, completeness has been improved since last submission, since activity data for some sectors were made available.

The timeliness parameter of the IIR containing 2022 emission data was set to 95%, as the IIR report was submitted after the official deadline of 15th March defined in the CLRTAP Reporting Guidelines (ECE/EP.AIR/125), due to engagement of the experts in other work overload. Submission of emission data, i.e. NFR Tables to CEIP was however done in time on 14th February, and resubmission was done on 7th March this year.

For next year's submission it is planned to submit both, NFR tables and IIR by the set deadlines of the UNECE CLRTAP Reporting Guidelines.

Table 9 Completeness Analysis 2022

Sector	Submiss	ion 2023	Subn	nission 202	Plan Submission 2025			
	1990	2022	1990	2021	2022	1990	2022	2023
Transparency (IE)	98%	98%	98%	98%	98%	98%	98%	98%
Completeness (NE)	89%	94%	90%	95%	95%	90%	96%	96%
Completeness (IIR)	~ 320	pages	~	340pages	~ 360 pages			
Timeliness (Submission)	95	5%*		95%*	100%			

Accuracy, consistency, and comparability were checked during the EMEP/EEA Reviews. Recommendations from the Stage 3 reviews (2011, 2016, 2020 and 2022), have been partially implemented as can be seen from sectorial chapters. Those that have not been implemented and will be implemented in future submission are presented in the improvement plan below.

The Workflow matrix has been prepared, and the following QA/QC activities were carried out to ensure the quality of the inventory:

Table 10 Annual time schedule

Task	Description	Responsibility	Deadline
AD collection and QC	Requesting input data	Sector expert	April 30
input data for all sectors	Quality control (QC) input data	Sector expert	June 30
Review results	Implementation of review recommendations	Sector expert	October 30
Emissions calculation	Estimation of emissions for all sources	Sector expert	October 30
QC (general and category specific)	Quality Checks of sectoral inventories (category-specific QC): results, emission trends, recalculations	Deputy sector expert	November 30
NFR compilation	Compilation of NFR/(aggregated) data tables	Data Manager	December 31
NFR submission	Submission of NFR tables	QA/QC expert	February 15
Time series reports & Recalculations & KCA & UA	Recalculation Analysis, Key Category Analysis, Uncertainty Analysis	QA/QC expert	January 31
IIR sectorial chapters	Compilation of the IIR – updating of methodological issues	Sector expert	February 15
	Compilation of a draft IIR report	QA/QC expert	February 28
Preparation of "Informative Inventory Report"	Provide the IIR report for Peer-Review; revision of the IIR pursuant to comments received or inclusion of recommendations in planned improvements (both from reviews and internal comments)	Head of Division	March 1
QC IIR	QC of IIR (requirements fulfilled, completeness, etc.)	QA/QC expert	March 10
Approval of submission	Official approval of the IIR report	Head of Unit	March 15
UNECE Submission	Submission of the IIR	NRC	March 15

^{*}These deadlines for preparation and reporting of the IIR will be respected from future submissions. During this reporting round we usually postponed submission of the IIR by 15th April, since emission invenoty experts beside inventory are also engaged in other tasks.

2.6.1. Quality control procedures

QC activities are an important component in the annual inventory preparation process. The basic aim is to ensure the quality of estimates and reporting and to improve the inventory. Sector related QC is performed by sector experts during (category-specific QC) and after (general QC) the inventory preparation. General checks relate to calculations and data processing. The completeness of the inventory is checked to meet the current situation of sources in the country and the pollutants likely to be emitted. Documentation/archiving of the inventory are applicable to all source categories. Category-specific quality checks relate to input data, emission data and emission factors.

- Plausibility check of data received from operators (category-specific);
- Analysis of time series data;
- If anything is unclear, questions for clarification are sent to the data provider (category-specific);
- Assessment of needs for recalculations (category-specific);
- Check of gap filled data/check interpolation and extrapolation methods (category-specific);
- Comparison of country specific emission factors with default values (category-specific);
- Documentation of actions taken in calculation sheets to ensure transparency;
- Comparison of emissions calculated and imported to the NFR template (general);
- Check of consistency within NFR template (general);

- Correct use of notation keys;
- Check if all data sources have a reference (general);
- Correct and complete description of methods.

After finalization of the IIR report, before official approval and submission, the whole report is checked by the QA/QC manager, or some other expert appointed for:

- Completeness of reporting per sector (e.g. all sectors updated);
- Completeness of general reporting (information on recalculations, KCA, UA included);
- Complete citing of references;
- Implementation of improvements;
- Consistency data tables and text in the inventory report;
- Correct and consistent information on key category analysis;
- Explanation of significant trends in the time series.

During this year, the format, consistency, and completeness of the inventory before submitted to UNECE/CEIP tables were checked through REPDAP and corrections were made according to the received output file from RepDab (RepDab Report). This year minor corrections were proposed by CEIP.

2.6.2. Quality assurance procedures

The IIR report itself is annually sent for approval by the Head of division and one air quality expert that have not been included in the preparation process, one week before submission.

The air emission inventory reported under the LRTAP Convention is submitted to the Center of Emission Inventories and Projections (CEIP). Here, a technical review of national inventories is carried out, to improve transparency, consistency, comparability, completeness, and accuracy of submitted data.

The review consists of three stages, whereby stage 1 and 2 are carried out annually, and the third stage – the in-depth review – on an irregular basis. Findings in the Stage 1 and 2 review report are elaborated in the chapter emission trends and recalculations. The Stage 3 review of the Macedonian Inventory was carried out in May – September 2023, for emissions coming from agriculture sector. Some of recomendations were incorporated in this report. Those recommendations that are planned to be implemented in the following submissions are listed in the chapter for planned improvements.

2.6.3. Archiving and documentation

The inventory team uses one server, where all the inventory related information is stored. As far as possible, important information used as direct input data for calculation is stored electronically (scans of hardcopies).

Each sector has a common folder system, where calculation files, raw data, references, background material and inventory report contributions are stored. Whenever a reporting cycle has been finished, the folders are closed. This is to ensure the reproducibility and transparency of the calculation for a specific reporting year. Furthermore, after each reporting cycle, all data files, spreadsheets, and electronic documents are archived as 'read-only-files', so that they are protected against unintentional change and estimates, and can be clearly traced back, e.g., during the review process.

Back-up copies (DVD) of the server are made at regular intervals. Access to files is limited to the inventory team.

In the next year, the "old" files will be copied, and used as the basis for the new inventory preparation. This shall ensure consistency in the methods and data used.

Assumptions and methodological issues related to the calculation (e.g., extrapolation or gap filling), are documented in the respective calculation files. All calculation files have a sheet called "info" at the beginning, defining the person responsibility for these calculations, noting the last update, noting problems encountered, improvements needed, data sources and the status. This is important to document the work, and keep an overview, which is especially essential when one person is responsible for numerous sectors and categories.

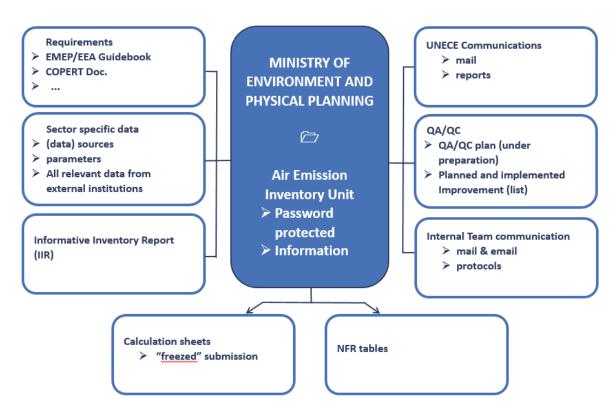
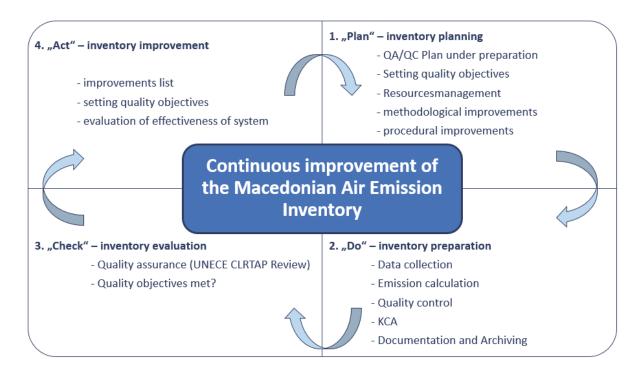



Figure 4 Archiving system

The Macedonian inventory is subject to continuous improvement.

Figure 5 Improvement Cycle

For documentation and monitoring purposes, an improvement list was introduced (updated after each reporting cycle), where suggestions for improvements are collected and their implementation is monitored.

The improvement list is filled by the sector experts based on their notes in the calculation sheets. General (cross-cutting) issues are identified and collected by the project and QA/QC manager in an own list.

Sources of improvements are CLRTAP review findings, but also improvement ideas from the inventory experts, or suggestions from outside experts (in the frame of QA). Besides the source, the list includes concrete improvement measures, prioritization, and timeline for implementation of the measures as well as a documentation field for the status of implementation ("finished").

During an internal inventory team meeting the improvements needed are discussed and prioritized based on KCA and UCA results.

2.7. General uncertainty evaluation

The uncertainty assessment of the main pollutants (SO₂, NO_x, NMVOC, NH₃ and PM_{2.5}) has been carried out. The assessment was carried out for the base year 1990 and for the year 2022. There is a need of further trainings on this subject since now the knowledge is limited and excel files developed in the Twining project are updated on yearly base.

The method for the assessment of uncertainty is described in the "EMEP/EEA air pollutant emission inventory guidebook 2016" (EEA 2016)". For the Macedonian uncertainty analysis, the Tier 1 method

was implemented for the main pollutants. By using the error propagation method, the uncertainties for a specific source category can be estimated. By combining these uncertainties an overall uncertainty can be calculated. To estimate the overall uncertainty per pollutant, an uncertainty value for each activity data and emission factor in every sector had to be estimated. This assessment was based on guidance stated in Table 11 for activity and Table 12 for emission factors.

Table 11 Rating definitions for activity data

Data source	Error range
The national (official) statistics	-
An update of last year's statistics, using gross economic growth factors	0-2%
IEA energy statistics	OECD: 2-3% non-OECD: 5-10%
UN data bases	5-10%
Default values, other sectors and data sources	30-100%

Source: Table 3-1 Rating definitions, Chapter 5 of the EMEP/EEA emission inventory guidebook 2016.

Table 12 Rating definitions for emission factors

Rating	Definition	Typical Error Range
А	An estimate based on a large number of measurements made at a large number of facilities that fully represent the sector	10 to 30%
В	An estimate based on a large number of measurements made at a large number of facilities that represent a large part of the sector	20 to 60%
С	An estimate based on a number of measurements made at a small number of representative facilities, or an engineering judgment based on a number of relevant facts	50 to 200%
D	An estimate based on single measurements, or an engineering calculation derived from a number of relevant facts	100 to 300%
Е	An estimate based on an engineering calculation derived from assumptions only	order of magnitude

Source: Table 3-2 Rating definitions, Chapter 5 of the EMEP/EEA emission inventory guidebook 2016.

2.7.1. Results

The quantitative assessment was performed with the Tier 1 method for the pollutants SO_2 , NO_x , NMVOC, NH_3 and $PM_{2.5}$, for the year 2022 and the respective level and trend uncertainties. The results of the uncertainty analysis are presented in following tables.

Table 13 Result of overall uncertainty estimation for the main pollutants SO₂, NOx, NMVOC, NH₃ and PM₂.5

Pollutants	Emissions 2022	Level uncertainty 2022	Trend uncertainty 1990 - 2022
SO ₂	90.6 kt	20.0%	5.6%
NOX	22.7 kt	18.2%	5.9%
NMVOC	26.1 kt	43.5%	12.1%
NH ₃	8.3 kt	91.9%	22.5%
PM2.5	8.406 kt	90.7%	12.9%

A more detailed presentation of the uncertainties on sectorial level is given in the following tables below.

Table 14 Uncertainty estimation of SO_2 emissions 1990 and 2022

Member State	: MK											
Reporting year	2022											
NRF sector ▼	Pollutan ▼	Base year emissio ▼	Year t	Activity data uncertainty	Emission factor uncertainty (1)	Combined uncertaint -T	Contribution to variance by category in year x	Type A sensitivi ▼	Type B	Uncertainty in trend in national emissions introduced by emission factor / estimation paramete	Uncertainty in trend in national emissions introduced by activity data uncertainty (3)	Uncertainty introduced into the trend in total national emissior
		Mg	Mg	%	%	%	%	%	%	%	%	%
	SO2	Input data	Input data	input data Note A	input data Note A	(E^2+F^2)^(1/2)	(G*D)^2/Summe (D)^2	Note B	D/Summe(C)	I*F Note C	J*E*sqrt(2) Note D	K^2 + L^2
1 A 1 a	SO2	102,1	87,7	5,0	20,0	20,62	398,76	0,05	0,78	0,93	5,53	31,46
1 A 1 b	SO2	0,8	NO	5,0	20,0	20,62						
1 A 2 a	SO2	1,4	2,0	10,0	20,0	22,36	0,24	0,01	0,02	0,16	0,25	0,09
1 A 2 b	SO2	2,1	0,0	10,0	20,0	22,36	0,00	-0,02	0,00	-0,30	0,00	0,09
1 A 2 c	SO2	0,0	0,0	10,0	20,0	22,36	0,00	0,00	0,00	0,00	0,00	0,00
1 A 2 d	SO2	0,3	0,0	10,0	20,0	22,36	0,00	0,00	0,00	-0,04	0,00	0,00
1 A 2 e	SO2	0,2	0,0	10,0	20,0	22,36	0,00	0,00	0,00	-0,03	0,00	0,00
1 A 2 g 8	SO2	0,4	0,5	10,0	20,0	22,36	0,01	0,00	0,00	0,02	0,06	0,00
1 A 3 a	SO2	0,0	0,0	10,0	20,0	22,36	0,00	0,00	0,00	0,00	0,00	0,00
1 A 3 b	SO2	0,7	0,0	10,0	20,0	22,36	0,00	0,00	0,00	-0,09	0,00	0,01
1 A 3 d	SO2	0,0	0,0	10,0	20,0	22,36	0,00	0,00	0,00	0,00	0,00	0,00
1 A 4 a	SO2	0,2	0,0	10,0	20,0	22,36	0,00	0,00	0,00	-0,02	0,00	0,00
1 A 4 b	SO2	0,4	0,1	20,0	20,0	28,28	0,00	0,00	0,00	-0,03	0,03	0,00
1 A 4 c	SO2	0,2	0,1	10,0	20,0	22,36	0,00	0,00	0,00	-0,01	0,01	0,00
1 B 2 a	SO2	0,8	-	10,0	20,0	22,36	0,00	-0,01	0,00	-0,11	0,00	0,01
1 B 2 c	SO2	0,0	NO	20,0	20,0	28,28						
5 C	SO2	0,0	0,0	10,0	200,0	200,25	0,00	0,00	0,00	0,00	0,00	0,00
Total Uncertainties						Uncertainty in total inventory %:	19,98				Trend uncertainty %:	5,63

Table 15 Uncertainty estimation of NO_x emissions 1990 and 2022

Member S	State: MK											
Reporting y												
NRF sector	▼ Pollutan ▼	Base year emissio ▼	Year t emissio ▼	Activity data uncertainty (1)	Emission factor uncertainty (1)	Combined_uncertaint -T	Contribution to variance by category in year x	Type A sensitivi ▼	Type B sensitivi ▼	Uncertainty in trend in national emissions introduced by emission factor / estimation paramete	Uncertainty in trend in national emissions introduced by activity data uncertainty (3)	Uncertainty introduced into the trend in total national emissior ▼
		Mg	Mg	%	%	%	%	%	%	%	%	%
	NOX	Input data	Input data	input data Note A	input data Note A	(E^2+F^2)^(1/2)	(G*D)^2/Summe (D)^2	Note B	D/Summe(C)	l*F Note C	J*E*sqrt(2) Note D	K^2 + L^2
1 A 1 a	NOX	23,8	6,4	5,0	20,0	20,62	33,56	-0,12	0,14	-2,37	0,99	6,59
1 A 1 b	NOX	0,3	NO	5,0	20,0	20,62						
1 A 2 a	NOX	1,8	0,7	10,0	40,0	41,23	1,68	0,00	0,02	-0,17	0,22	0,08
1 A 2 b	NOX	0,7	0,0	10,0	40,0	41,23	0,00	-0,01	0,00	-0,29	0,01	0,08
1 A 2 c	NOX	0,1	0,0	10,0	40,0	41,23	0,00	0,00	0,00	-0,02	0,00	0,00
1 A 2 d	NOX	0,1	0,0	10,0	40,0	41,23	0,00	0,00	0,00	-0,02	0,00	0,00
1 A 2 e	NOX	0,9	0,4	10,0	40,0	41,23	0,47	0,00	0,01	-0,04	0,12	0,02
1 A 2 g 7	NOX	3,7	0,9	10,0	40,0	41,23	2,63	-0,02	0,02	-0,83	0,28	0,77
1 A 2 g 8	NOX	2,0	2,8	10,0	40,0	41,23	25,50	0,04	0,06	1,56	0,86	3,18
1 A 3 a	NOX	0,3	0,5	10,0	40,0	41,23	0,85	0,01	0,01	0,31	0,16	0,12
1 A 3 b	NOX	8,9	9,0	10,0	40,0	41,23	264,60	0,10	0,20	3,97	2,77	23,44
1 A 3 c	NOX	0,4	0,0	10,0	40,0	41,23	0,01	0,00	0,00	-0,12	0,02	0,02
1 A 3 d	NOX	0,0	0,0	10,0	40,0	41,23	0,00	0,00	0,00	0,00	0,00	0,00
1 A 4 a	NOX	0,1	0,7	10,0	40,0	41,23	1,56	0,01	0,02	0,54	0,21	0,34
1 A 4 b	NOX	0,8	0,4	20,0	40,0	44,72	0,66	0,00	0,01	0,00	0,26	0,07
1 A 4 c	NOX	0,8	0,3	10,0	40,0	41,23	0,27	0,00	0,01	-0,08	0,09	0,01
1B2a	NOX	0,3	-	10,0	40,0	41,23	0,00	0,00	0,00	-0,13	0,00	0,02
1B2c	NOX	0,0	NO	20,0	40,0	44,72						
2 G	NOX	0,0	0,0	20,0	40,0	44,72	0,00	0,00	0,00	-0,02	0,00	0,00
3 B 1	NOX	0,1	0,1	5,3	40,0	40,35	0,03	0,00	0,00	0,02	0,01	0,00
3 B 2	NOX	0,0	0,0	10,2	40,0	41,28	0,00	0,00	0,00	-0,01	0,00	0,00
3 B 3	NOX	0,0	0,0	6,1	40,0	40,46	0,00	0,00	0,00	0,00	0,00	0,00
3 B 4	NOX	0,1	0,0	10,0	40,0	41,23	0,00	0,00	0,00	-0,02	0,01	0,00
3 D a	NOX	0,3	0,4	50,0	40,0	64,03	1,09	0,01	0,01	0,20	0,57	0,37
5 C	NOX	0,1	0,0	10,0	200,0	200,25	0,14	0,00	0,00	0,07	0,01	0,01
Total Uncertaintie	es					Uncertainty in total inventory %:	18,25				Trend uncertainty %:	5,92

Table 16 Uncertainty estimation of NMVOC emissions 1990 and 2022

Member State:	MK											
Reporting year:												
	Pollutan ▼	Base year emissio.▼	Yeart emissio.▼	Activity data uncertainty (1)	Emission factor uncertainty (1)	Combined uncertaint	Contribution to variance by category in year x	Type A sensitivi ▼	Type B sensitivi ▼	Uncertainty in trend in national emissions introduced by emission factor / estimation paramete	Uncertainty in trend in national emissions introduced by activity data uncertainty (3)	Uncertainty introduced into the trend in total national emissior ▼
		Mg	Mg	%	%	%	%	%	%	%	%	%
	PM2.5	Input data	Input data	input data Note A	input data Note A	(E^2+F^2)^(1/2)	(G*D)^2/Summe (D)^2	Note B	D/Summe(C)	l*F Note C	J*E*sqrt(2) Note D	K^2 + L^2
1 A 1 a	PM2.5	3,5	1,1711	5,0	125,0	125,10	309,33	0,01	0,04	1,06	0,25	1,18
1 A 1 b 1 A 2 a	PM2.5 PM2.5	0,0	NO 0,2835	5,0 10,0	40,0 40,0	40,31 41,23	1,97	0,01	0,01	0,28	0,12	0,09
1 A 2 b	PM2.5	0,2	0,2835	10,0	40,0	41,23	0,00	0,00	0,00	-0,08	0,00	0,09
1 A 2 c	PM2.5	0,0	0,0006	10,0	40,0	41,23	0,00	0,00	0,00	0,00	0,00	0,00
1 A 2 d	PM2.5	0,0	0,0000	10,0	40,0	41,23	0,00	0,00	0,00	-0,01	0,00	0,00
1 A 2 e	PM2.5	0,1	0,0350	10,0	40,0	41,23	0,03	0,00	0,00	0,03	0,02	0,00
1 A 2 g 7	PM2.5	0,2	0,0575	10,0	125,0	125,40	0,75	0,00	0,00	-0,01	0,03	0,00
1 A 2 g 8	PM2.5	0,1	0,0931	10,0	125,0	125,40	1,97	0,00	0,00	0,28	0,04	0,08
1 A 3 a	PM2.5	0,0	0,0029	10,0	40,0	41,23	0,00	0,00	0,00	0,00	0,00	0,00
1 A 3 b	PM2.5	0,0	0,3742	10,0	40,0	41,23	3,43	0,01	0,01	0,45	0,16	0,23
1 A 3 c	PM2.5	0,0	0,0012	10,0	40,0	41,23	0,00	0,00	0,00	0,00	0,00	0,00
1 A 3 d	PM2.5	0,0	0,0001	10,0	40,0	41,23	0,00	0,00	0,00	0,00	0,00	0,00
1 A 3 e	PM2.5	-	-					0,00	0,00			
1 A 4 a	PM2.5	0,0	0,0828	10,0	125,0	125,40	1,55	0,00	0,00	0,30	0,04	0,09
1 A 4 b	PM2.5	11,8	5,8499	20,0	125,0	126,59	7.903,09	0,09	0,18	10,85	5,09	143,62
1 A 4 c	PM2.5	0,0	0,0312	10,0	125,0	125,40	0,22	0,00	0,00	0,08	0,01	0,01
1B1a 1B1b	PM2.5 PM2.5	0,0 NE	0,0305 NE	10,0	200,0	200,25	0,54	0,00	0,00	0,12	0,01	0,02
1B1B	PM2.5	0,0	INE.	10,0	200,0	200,25	0,00	0,00	0,00	-0,01	0,00	0,00
1B2b	PM2.5	NE	NE.	10,0	200,0	200,25	0,00	0,00	0,00	-0,01	0,00	0,00
1B2c	PM2.5	NA.	NO	20,0								
2 A 1	PM2.5	0,1	0,0307	2,0	200,0	200,01	0,54	0,00	0,00	0,09	0,00	0,01
2 A 2	PM2.5	0,0	NO.	5,0	200,0	200,06	0,01	0,00	0,00	0,00	0,00	0,01
2 A 3	PM2.5	0,0	NO	10,0	200,0	200,25						
2 A 5	PM2.5	0,1	0,0922	10,0	200,0	200,25	4,92	0,00	0,00	0,46	0,04	0,21
2C1	PM2.5	0,1	0,0053	2,0	40,0	40,05	0,00	0,00	0,00	-0,03	0,00	0,00
2 C 2	PM2.5	14,7	0,0232	5,0	40,0	40,31	0,01	-0,11	0,00	-4,58	0,01	21,02
2 C 3	PM2.5	0,0	NE	2,0	40,0	40,05						
2 C 5	PM2.5	0,2	0,0001	5,0	40,0	40,31	0,00	0,00	0,00	-0,06	0,00	0,00
2 C 6	PM2.5	0,0	NO	5,0	40,0	40,31						
2 D	PM2.5	0,0	0,0036	20,0	40,0	44,72	0,00	0,00	0,00	-0,01	0,00	0,00
2 G 3 B 1	PM2.5 PM2.5	0,7 0,1	0,0293 0,0527	20,0 5,3	40,0 200,0	44,72 200,07	0,02	0,00	0,00	-0,19 0,20	0,03	0,04
3B1 3B2	PM2.5	0,1	0,0527	10,2	200,0	200,07	1,60 0,10	0,00	0,00	0,20	0,01	0,04
3B2 3B3	PM2.5	0,0	0,0129	6.1	200,0	200,26	0,10	0,00	0,00	0,01	0,01	0,00
3B4	PM2.5	0.0	0,0012	10.0	200,0	200,09	0,00	0,00	0,00	0,00	0.00	0,00
3B5	PM2.5	0,0	0,0073	10,0	200,0	200,20	0,03	0,00	0,00	0,00	0,00	0,00
3 D a	PM2.5	-		50,0	200,0	206,16	0,00	0,00	0,00	0,00	0,00	0,00
5 A	PM2.5	0,0	0,0001	50,0	200,0	206,16	0,00	0,00	0,00	0,00	0,00	0,00
5 C	PM2.5	0,1	0,0539	10,0	200,0	200,25	1,68	0,00	0,00	0,22	0,02	0,05
5 D	PM2.5	-	-				,	0,00	0,00	,	.,	
Total		32,527	8,3				8.231,78					166,70
						Uncertainty in total inventory						
Total Uncertainties						%:	90,73				Trend uncertainty %:	12,91

Table 17 Uncertainty estimation of NH_3 emissions 1990 and 2022

Reporting year:	2022	Base year emissio ▼	Year t emissio ▼	Activity data uncertainty (1)	Emission factor uncertainty (1)	Combined uncertaint -	Contribution to variance by category in year x	Type A sensitivi ▼	Type B sensitivi ▼	Uncertainty in trend in national emissions introduced by emission factor / estimation paramete	Uncertainty in trend in national emissions introduced by activity data uncertainty (3)	Uncertainty introduced into the trend in total national emission
		Mg	Mg	%	%	%	%	%	%	%	%	%
				input data	input data		(G*D)^2/Summe			ľF	J*E*sqrt(2)	
	NH3	Input data	Input data	Note A	Note A	(E^2+F^2)^(1/2)	(D)^2	Note B	D/Summe(C)	Note C	Note D	K^2 + L^2
1 A 1 a 1 A 1 b	NH3 NH3	NA NE	NA NO	5,0 5,0								
1 A 1 c	NH3	NO	NO									
1 A 2 a	NH3	NA	0,00031	10,0					0,00		0,00	
1 A 2 b 1 A 2 c	NH3 NH3	NA NA	NA NA	10,0 10,0								
1 A 2 d	NH3	NA NA	0,00001	10,0					0,00		0,00	
1 A 2 e	NH3	NA	0,00018	10,0					0,00		0,00	
1 A 2 f	NH3	NO	NO									
1 A 2 g 7	NH3	0,0	0,00022	10,0	125,0	125,40	0,00	0,00	0,00	0,00	0,00	0,00
1 A 2 g 8 1 A 3 a	NH3 NH3	0,0	0,00012	10,0 10,0				0,00	0,00		0,00	
1 A 3 b	NH3	-	0,10186	10,0	125,0	125,40	2,44	0,01	0,01	0,86	0,10	0,75
1 A 3 c	NH3	0,0	0,00001	10,0	125,0	125,40	0,00	0,00	0,00	0,00	0,00	0,00
1 A 3 d	NH3	-	-	10,0				0,00	0,00		0,00	
1 A 3 e 1 A 4 a	NH3 NH3		0,00015	10,0				0,00	0,00		0,00	
1 A 4 b	NH3	0,1	1,06322	20,0	125,0	126,59	270,48	0,00	0,00	8,40	2,04	74,72
1 A 4 c	NH3	0,0	0,00011	10,0	125,0	125,40	0,00	0,00	0,00	0,00	0,00	0,00
1 A 5 b	NH3	NA NA	NA NA	10.0								
1B1a 1B1b	NH3 NH3	NA NE	NA NE	10,0								
1B2a	NH3	0,0	- INL	10,0	40,0	41,23	0,00	0,00	0,00	0,00	0,00	0,00
1B2b	NH3	NE	NE					·			·	
1B2c	NH3	NA	NO	20,0								
2 A 1 2 A 2	NH3 NH3	NA NA	NA NO	2,0 5,0								
2 A 3	NH3	0,0	NO.	10,0	40,0	41,23						
2 A 4 a	NH3											
2 A 4 b	NH3											
2 A 4 c 2 A 4 d	NH3 NH3											
2 A 5	NH3	-	-	10,0				0,00	0,00		0,00	
2 A 7 a	NH3											
2 A 7 b	NH3											
2 A 7 c 2 B 1	NH3 NH3	NO	NO									
2B2	NH3	NO NO	NO									
2 B 5	NH3	NE										
2 B 8	NH3											
2 B-10 2 C 1	NH3 NH3	- NE	- NE	2,0				0,00	0,00			
2C2	NH3	NA NA	NA NA	5,0								
2 C 3	NH3	NA	NA	2,0								
2 C 4	NH3	NE	NE									
2C5	NH3 NH3	NA NA	NA NO	5,0								
2C6 2C7	NH3	NA -	NO -	5,0				0,00	0,00			
2 D	NH3	-	0,00007	20,0				0,00	0,00		0,00	
2 E	NH3											
2F1 2F2	NH3 NH3											
2F2 2F3	NH3											
2 F 4	NH3											
2 F 5	NH3											
2F6	NH3 NH3	^	0.00451	20.0				0.00	0.00		0.04	
2 G 2 H	NH3	0,1	0,00451	20,0				0,00	0,00		0,01 0,00	
21	NH3	NA NA	NA.	25,0				5,00	5,00		5,00	
3 A 1	NH3											
3 A 2	NH3											
3 A 3 3 A 4	NH3 NH3											
3B1	NH3	2,9	1,98160	5,3	125,0	125,11	917,75	0,02	0,13	3,08	1,01	10,53
3 B 2	NH3	0,9	0,25860	10,2	125,0	125,42	15,70	-0,02	0,02	-2,12	0,25	4,54
3 B 3	NH3	0,9	0,86446	6,1	125,0	125,15	174,76	0,03	0,06	3,22	0,50	10,62
3B4 3B5	NH3 NH3	2,4	0,59189	10,0	125,0	125,40	82,26	-0,05	0,04	-6,21	0,57	38,85
3 Da	NH3	7,4	3,31518	50,0	200,0	206,16	6.974,23	-0,05	0,22	-10,75	15,87	367,25
3 H	NH3											
31	NH3	NE.										
5 A 5 B	NH3 NH3	0,00054	0,00125 0,00003	50,0				0,00	0,00		0,01	
5 C	NH3	-	- 0,00003	10,0				0,00	0,00		0,00	
30				T		1		0,00	0,00		.,	
5 D	NH3	-						0,00	0,00			
	NH3	14,8	8,2			Uncertainty in	8.437,61	0,00	0,00			507,25

Table 18 Uncertainty estimation of PM2.5 emissions 1990 and 2022

Member State	MK											
Reporting year												
NRF sector		Base year emissio ▼	Year t emissio ▼	Activity data uncertainty	Emission factor uncertainty (1)	Combined uncertaint -	Contribution to variance by category in year x	Type A	Type B	Uncertainty in trend in national emissions introduced by emission factor / estimation paramete	Uncertainty in trend in national emissions introduced by activity data uncertainty (3)	Uncertainty introduced into the trend in total national emissior
		Mg	Mg	%	%	%	%	%	%	%	%	%
1 A 1 a	PM2.5	Input data	Input data	input data Note A	input data Note A 125.0	(E^2+F^2)^(1/2) 125,10	(G*D)^2/Summe (D)^2 309,33	Note B	D/Summe(C) 0,04	I*F Note C	J*E*sqrt(2) Note D 0,25	K^2 + L^2 1,18
1 A 1 b	PM2.5	0.0	NO.	5,0	40,0	40,31	309,33	0,01	0,04	1,00	0,23	1,10
1 A 2 a	PM2.5	0,2	0.2835	10,0	40.0	41,23	1,97	0.01	0.01	0.28	0.12	0.09
1 A 2 b	PM2.5	0,3	0,0012	10.0	40,0	41,23	0,00	0,00	0,00	-0,08	0.00	0.01
1 A 2 c	PM2.5	0,0	0,0006	10,0	40,0	41,23	0,00	0,00	0,00	0,00	0,00	0,00
1 A 2 d	PM2.5	0,0	0,0011	10,0	40,0	41,23	0,00	0,00	0,00	-0,01	0,00	0,00
1 A 2 e	PM2.5	0,1	0,0350	10,0	40,0	41,23	0,03	0,00	0,00	0,03	0,02	0,00
1 A 2 g 7	PM2.5	0,2	0,0575	10,0	125,0	125,40	0,75	0,00	0,00	-0,01	0,03	0,00
1 A 2 g 8	PM2.5	0,1	0,0931	10,0	125,0	125,40	1,97	0,00	0,00	0,28	0,04	0,08
1 A 3 a	PM2.5	0,0	0,0029	10,0	40,0	41,23	0,00	0,00	0,00	0,00	0,00	0,00
1 A 3 b	PM2.5	0,0	0,3742	10,0	40,0	41,23	3,43	0,01	0,01	0,45	0,16	0,23
1 A 3 c	PM2.5	0,0	0,0012	10,0	40,0	41,23	0,00	0,00	0,00	0,00	0,00	0,00
1 A 3 d	PM2.5	0,0	0,0001	10,0	40,0	41,23	0,00	0,00	0,00	0,00	0,00	0,00
1 A 3 e	PM2.5	-	-					0,00	0,00			
1 A 4 a	PM2.5	0,0	0,0828	10,0	125,0	125,40	1,55	0,00	0,00	0,30	0,04	0,09
1 A 4 b	PM2.5	11,8	5,8499	20,0	125,0	126,59	7.903,09	0,09	0,18	10,85	5,09	143,62
1 A 4 c	PM2.5	0,0	0,0312	10,0	125,0	125,40	0,22	0,00	0,00	0,08	0,01	0,01
1B1a 1B1b	PM2.5 PM2.5	0,0 NE	0,0305 NE	10,0	200,0	200,25	0,54	0,00	0,00	0,12	0,01	0,02
1B2a	PM2.5	0,0	INC	10,0	200,0	200,25	0,00	0,00	0,00	-0.01	0.00	0.00
1B2b	PM2.5	NE	NE.	10,0	200,0	200,25	0,00	0,00	0,00	-0,01	0,00	0,00
1B2c	PM2.5	NA NA	NO NO	20,0								
2 A 1	PM2.5	0.1	0.0307	2,0	200,0	200.01	0,54	0,00	0,00	0,09	0,00	0.01
2 A 2	PM2.5	0,0	NO NO	5,0	200,0	200,06	0,04	0,00	0,00	0,03	0,00	0,01
2 A 3	PM2.5	0.0	NO	10,0	200,0	200,25						
2 A 5	PM2.5	0,1	0,0922	10,0	200,0	200,25	4,92	0,00	0,00	0,46	0,04	0,21
2 C 1	PM2.5	0,1	0,0053	2,0	40,0	40,05	0,00	0,00	0,00	-0,03	0,00	0,00
2C2	PM2.5	14,7	0,0232	5,0	40,0	40,31	0,01	-0,11	0,00	-4,58	0,01	21,02
2C3	PM2.5	0,0	NE	2,0	40,0	40,05						
2 C 5	PM2.5	0,2	0,0001	5,0	40,0	40,31	0,00	0,00	0,00	-0,06	0,00	0,00
2C6	PM2.5	0,0	NO	5,0	40,0	40,31						
2 D	PM2.5	0,0	0,0036	20,0	40,0	44,72	0,00	0,00	0,00	-0,01	0,00	0,00
2 G	PM2.5	0,7	0,0293	20,0	40,0	44,72	0,02	0,00	0,00	-0,19	0,03	0,04
3 B 1	PM2.5	0,1	0,0527	5,3	200,0	200,07	1,60	0,00	0,00	0,20	0,01	0,04
3 B 2	PM2.5	0,0	0,0129	10,2	200,0	200,26	0,10	0,00	0,00	0,01	0,01	0,00
3B3 3B4	PM2.5 PM2.5	0,0	0,0012	6,1 10.0	200,0	200,09	0,00	0,00	0,00	0,01	0,00	0,00
3B4 3B5	PM2.5	0,0	0,0075	10,0	200,0	200,25	0,03	0,00	0,00	0,00	0,00	0,00
3 D a	PM2.5			50.0	200.0	206.16	0.00	0.00	0.00	0.00	0.00	0.00
5 A	PM2.5	0.0	0.0001	50,0	200,0	206,16	0,00	0.00	0.00	0,00	0.00	0.00
5 C	PM2.5	0,0	0,0539	10,0	200,0	200,16	1,68	0,00	0,00	0,00	0,02	0,05
5 D	PM2.5	0,1	- 0,0339	10,0	200,0	200,20	1,00	0,00	0,00	0,22	0,02	0,00
Total		32,527	8,3				8.231,78	,	,			166,70
			,-			Uncertainty in						,.
						total inventory %:						
Total Uncertainties	al Uncertainties						90,73				Trend uncertainty %:	12,91

2.7.2. Backgroun d information

ENERGY

For the calculation of the energy balance, the methodology "Energy Statistics Methodology, Eurostat F4, 1998" is used. The Energy balance is prepared in accordance with Regulation No 1099/2008 on energy statistics.

a) Energy balance 2022

The data for the whole year 2022 has been taken from the State Statistical Office (SSO).

In the preparation of the balance of network energy (electricity and gas), predictions and forecasts of consumption and losses in the systems were used. The data was obtained from the operators and anticipated needs of large customers, as well as forecasts for production of electricity generators.

The data for crude oil and petroleum products, and coal (coke, lignite and coal) was obtained from manufacturers, importers of energy (traders and/or large consumers).

Households

The estimates in the survey on energy consumption in households during 2014, are generally in the form of totals and averages. The scope of estimation is the total number of households in Republic of North Macedonia divided between the eight statistical regions. The estimation procedures of SECH data were performed by weighting the probabilities of a sample selection, with a certain adjustment for non-response to the survey and calibrating the weight, according to population estimates from the regional demographic distributions by sex and five-year age groups, as well as the estimated number of households in the regions. Calculations were performed in SAS 9.1 using the CALMAR module for calibrating weights. The non-response rate in SECH 2014 is 6.5% and the refusal rate is 3.6%. Because of calculations of the sample and rounding up calculated results to one number, sometimes deviations are possible in the total of the results, obtained by summing up individual items. The survey results affect the activity data on biomass consumption for 2015 and onwards within the energy balance.

Transport

Data sources for road transport statistics are the regular monthly and annual reports submitted by business entities, whose main activity according to National Classification of Activities is road transport. Data on the number of registered road motor vehicles, type of vehicles and year of production, vehicle by type of fuel, road traffic accidents and data on cross-border traffic of passengers and vehicles, are taken from the Ministry of Internal Affairs. Data on road network are taken from the Agency for State Roads, while the data on local road network are obtained from the units of local self-government (municipalities). Regular cross-border passenger traffic is performed based on regular international travel documents for passengers and vehicles, without restriction on final destination. Small-scale border traffic of passengers is performed based on bilateral agreements with neighboring countries, only in areas covered by the agreements.

Industry

The State Statistical Office of the Republic of North Macedonia, in cooperation with the regional statistical offices, has collected data included in this chapter from the existing records of the enterprises and their units distributed in the field of industry. This data is covered in the Monthly Industrial Report and the Annual Industrial Report. The data from the Monthly Industrial Report are the basis for calculating the indices of the production, stocks and the employees. The data on the industrial production in natural indicators are collected by the Annual Industrial Report. The coverage goes until 1999 in the Monthly Industrial Report and until 1998 in the Annual Industrial Report; data on industry were collected according to the Uniform Classification of Economic Activities (UCEA); since 1999 and 2001 in the Annual Industrial Report and the Monthly Industrial Report, respectively, data are collected according to the National Classification of Activities NKD Rev.1. In 2010, in the Annual Industrial Report for 2009, the National Classification of Activities NKD Rev.2 and the National Nomenclature of Industrial Products NNIP 2008, were implemented. All business entities with 10 and more employees in main, auxiliary, or supporting manufacturing activities are included.

Agriculture

The estimates in the Livestock Survey are in the forms of totals and ratios. The domain of estimates is the whole country and the eight regions. Sample selection weights were used in the estimation

procedures of the 2016 Livestock Survey, with certain adjustments made regarding the survey non-response rate. The errors are calculated as relative errors. All calculations were made with the SAS statistical software package. The non-response rate in the Livestock Survey 2016 was 5.3%. The following table shows the calculated relative errors of the main categories of livestock in the survey for 2016. For 2022 data are gathered from MAKSTAT database. There are no available data for uncertainty since these data are no longer published.

Table 19 Relative errors of livestock survey 2015

Relative errors	Cattle	Pigs	Sheep	Poultry	Goats
Republic of North Macedonia	5.3	6.1	10.2	7.7	9.4

Waste

Municipal waste is waste collected by, or on behalf of municipal authorities. It consists of waste from the households, including the massive waste, similar waste from commercial and trade industries, official buildings, institutions and small business, waste from gardens, street waste, the content of waste containers and the waste from market cleaning. The definition excludes waste from the municipal sewage networks, and the waste from construction and demolition. The data presented here were obtained through the regular annual statistical survey on municipal waste, which was carried out in 2009 (reference year 2008) for the first time, in accordance with the national legislation and European standards. Reporting units are the municipal enterprises in Republic of North Macedonia. Data on the total amount of collected municipal waste, as well as data on the treatment of collected municipal waste, have been obtained based on the reports filled in by the reporting units. On the basis of the obtained data and the data on the number of population, estimation has been made of the total generated municipal waste on the territory of the Republic of North Macedonia. The obtained indicator of the annual amount of municipal waste per person in kg is a ratio of the total annual amount of generated municipal waste and the total population estimated for the reference year (as at 01.01. in the reference year).

2.8. General assessment of completeness

Notation keys are used according to the revised 2014 Reporting guidelines (ECE/EB.AIR.125) (see table below), to indicate where emissions are not occurring in North Macedonia, where emissions have not been estimated or have been included elsewhere as suggested by GB 2023.

Table 20 Notation keys used in the NFR

Abbreviation	Meaning	Objective
NA	not applicable	Is used for activities in each source category which are believed not to result in significant emissions of a specific compound;
NE	Actimated	For activity data and/or emissions by sources of pollutants which have not been estimated but for which a corresponding activity may occur within a Party. Where NE is used in an inventory to report emissions of pollutants, the Party should indicate in the IIR why such emissions have not been estimated. Furthermore, a Party may consider that a disproportionate amount of effort would be required to collect data for a pollutant from a specific category that would be insignificant in terms of the overall level and trend in national emissions and in such cases use the notation key NE. The Party should provide in the IIR justifications for their use of NE notation keys, e.g., lack of robust data, lack of methodology, etc. Once emissions from a specific category have been reported in a previous submission, emissions from this specific category should be reported in subsequent inventory submissions;
IE	elsewhere	For emissions by sources of pollutants estimated but included elsewhere in the inventory instead of under the expected source category. Where IE is used in an inventory, the Party should indicate, in the IIR, where in the inventory the emissions for the displaced source category have been included, and the Party should explain such a deviation from the inclusion under the expected category, especially if it is due to confidentiality;

Abbreviation	Meaning	Objective
С	confidential	(Confidential information), for emissions by sources of pollutants of which the reporting could lead to the disclosure of confidential information. The source category where these emissions are included should be indicated;
NO	not occurring	For categories or processes within a particular source category that do not occur within a Party;
NR	not relevant	According to paragraph 37 in the Guidelines, emission inventory reporting for the main pollutants should cover all years from 1990 onwards if data are available. However, NR is introduced to ease the reporting where reporting of emissions is not strictly required by the different protocols, e.g., emissions for some Parties prior to agreed base years.

2.8.1. Sources not estimated (NE)

Table 21 Number of "not estimated" (NE) per sector and pollutant in 2022

	Energy	Fugitives	IPPU	Agriculture	Waste	Other
NOx	2	0	4	2	0	0
(as NO2)	2	0	2	1	0	0
NMVOC	2	0	5	0	0	0
SOx	2	0	4	2	5	0
(as SO2)	3	0	4	2	1	0
NH3	3	0	4	2	1	0
PM2.5	2	0	4	2	1	0
PM10	3	0	6	0	1	0
TSP	2	0	3	1	0	0
ВС	3	0	5	0	1	0
СО	3	0	5	0	1	0
Pb	3	0	5	0	1	0
Cd	3	0	4	0	1	0
Hg	3	0	3	0	1	0
As	3	0	4	0	1	0
Cr	3	0	5	0	1	0
Cu	3	0	5	0	0	0
Ni	3	0	4	0	0	0
Se	4	1	6	0	1	0
Zn	4	0	2	0	0	0
PCDD/ PCDF (dioxins/ furans)	4	0	7	0	0	0
PAHs (Total 1-4)	4	0	6	0	0	0
НСВ	2	0	4	2	0	0
PCBs	2	0	2	1	0	0

Not estimated categories are due to not available activity data in the country, mainly for historical emissions since statistical data are now more detail and not summarized as previously. For some categories there is no available default EF to make the calculations.

Table 22 Number of "included elsewhere" (IE) per sector and pollutant in 2022

Pollutant	Energy	Fugitives	IPPU	Agriculture	Waste	Other
NOx (as NO2)	0	0	3	3	0	0
NMVOC	0	0	3	3	0	0
SOx (as SO2)	0	0	3	1	0	0
NH3	0	0	3	1	0	0
PM2.5	0	0	3	1	0	0
PM10	0	0	3	1	0	0
TSP	0	0	3	1	0	0
ВС	0	0	3	0	0	0
СО	0	0	3	0	0	0
Pb	0	0	3	0	0	0
Cd	0	0	3	0	0	0
Hg	0	0	3	0	0	0
As	0	0	3	0	0	0
Cr	0	0	3	0	0	0
Cu	0	0	3	0	0	0
Ni	0	0	3	0	0	0
Se	0	0	3	0	0	0
Zn	0	0	3	0	0	0
PCDD/ PCDF (dioxins/ furans)	0	0	3	0	0	0
PAHs (Total 1-4)	0	0	3	0	0	0
НСВ	0	0	3	0	0	0
PCBs	0	0	3	0	0	0

The notation key -" included elsewhere" (IE) is used in those source categories for which activity data are not available in the required details in the statistical yearbooks but have been included in other source categories. For example, in case of category 1.A.5.b there are available data for the last three years, while emissions from the previous years are noted as IE. For category 1.A.4.aii, there are available data for the period 2005-2022 while for the previous years, emissions are noted as IE. Abbreviation IE is used in cases where there is a lack of activity data.

The other notation keys used in the reporting are NA and NO. Use of the NA is due to missing EF in the EMEP Guidebook, while NO is used for proceses mostly in the industry sector which are not occurring in the country. Most of procesis like Nitric acid, ammonia, pulp production, cremation, municipal waste inceleration are not occurring. Some activities started later in the reporting period like clinical waste inceneration in 2000, or some stoped like production of oil or other metal and glass prodution. The number of used NO and NA notation keys are given in the following table.

Table 23 Number of "Not avaliable" (NA) per sector and pollutant in 2022

Pollutant	Energy	Fugitives	IPPU	Agriculture	Waste	Other
NOx (as NO2)	3	3	20	6	8	0
NMVOC	2	1	11	7	5	0
SOx (as SO2)	4	3	19	21	8	0
NH3	9	2	22	6	3	0
PM2.5	1	2	10	8	7	0
PM10	1	2	10	8	7	0
TSP	3	2	8	8	6	0
ВС	2	3	15	22	7	0
СО	3	3	20	21	7	0
Pb	8	3	18	22	7	0
Cd	3	3	17	22	7	0
Hg	10	2	18	22	8	0
As	9	2	18	22	7	0
Cr	3	3	20	22	7	0
Cu	3	3	20	22	7	0
Ni	3	3	19	22	8	0
Se	4	3	20	22	9	0
Zn	3	3	20	22	9	0
PCDD/ PCDF (dioxins/ furans)	9	3	17	22	7	0
PAHs (Total 1- 4)	5	3	19	16	7	0
НСВ	9	3	19	16	7	0
PCBs	9	3	17	16	8	0

Table 24 Number of "Not occuring" (NO) per sector and pollutant in 2022

Pollutant	Energy	Fugitives	IPPU	Agriculture	Waste	Other
NOx (as NO2)	3	6	16	4	5	1
NMVOC	3	6	16	4	5	1
SOx (as SO2)	3	6	16	4	5	1
NH3	3	6	16	4	5	1
PM2.5	3	6	16	4	5	1
PM10	3	6	16	4	5	1
TSP	3	6	16	4	5	1
ВС	3	6	15	4	5	1
со	3	6	16	4	5	1
Pb	3	6	16	4	5	1
Cd	3	6	16	4	5	1
Hg	3	6	16	4	5	1

As	3	6	16	4	5	1
Cr	3	6	16	4	5	1
Cu	3	6	16	4	5	1
Ni	3	6	16	4	5	1
Se	3	6	16	4	5	1
Zn	3	6	16	4	5	1
PCDD/ PCDF (dioxins/ furans)	3	5	16	4	5	1
PAHs	3	6	17	10	6	1
НСВ	3	6	17	10	6	1
PCBs	3	6	17	10	6	1

EXPLANATION OF KEY TRENDS

3. EXPLANATION OF KEY TRENDS

This chapter describes the trends and the drivers of the air pollutants required for the report.

3.1. Emission Trends for the Main Air Pollutants and CO

National total emissions and trends for the main air pollutants (NOx, NMVOC, SO₂ and NH₃) and CO, which are covered by the Gothenburg Protocol, from 1990-2022 are presented in the following table.

Table 25 Emission trends 1990 – 2022 for the main air pollutants and CO

	Emission in kt						
Year	NOx	NMVOC	SO ₂	NH ₃	со		
1990	45.66	48.42	112.15	14.78	133.11		
1991	37.80	42.39	91.21	13.94	112.21		
1992	39.63	44.27	88.39	13.97	124.04		
1993	41.10	47.17	90.90	14.19	133.88		
1994	36.92	40.96	90.18	14.17	121.42		
1995	39.47	45.26	96.54	13.96	125.78		
1996	38.72	43.72	90.42	12.91	123.74		
1997	38.05	45.03	94.76	12.51	126.99		
1998	43.32	44.93	109.29	12.24	129.23		
1999	40.58	45.77	99.24	12.36	132.36		
2000	43.92	47.46	106.18	12.25	145.04		
2001	40.90	41.05	108.23	11.73	114.29		
2002	40.95	38.07	96.14	11.13	116.10		
2003	35.96	38.04	94.76	11.01	116.93		
2004	37.20	38.36	95.63	11.08	121.71		
2005	35.07	27.32	94.78	10.61	75.16		
2006	34.96	28.59	93.13	10.88	70.90		
2007	38.04	29.34	98.48	10.72	71.90		
2008	33.97	29.17	76.83	10.65	67.23		
2009	34.91	27.27	103.05	9.87	63.37		
2010	36.38	28.56	85.63	10.06	62.51		
2011	38.74	29.20	103.39	10.38	64.17		
2012	36.58	29.34	91.30	9.56	66.75		
2013	29.02	28.93	82.03	9.55	64.36		
2014	26.39	28.70	82.69	9.61	62.15		
2015	21.67	28.20	75.00	9.57	60.19		
2016	24.79	27.87	63.27	9.72	63.23		
2017	23.47	28.42	54.72	9.66	55.58		
2018	22.71	27.72	59.80	9.18	55.13		
2019	23.27	27.41	115.42	7.96	55.89		

2020	20.15	26.18	93.43	8.13	51.34
2021	21.07	25.85	88.59	7.60	52.78
2022	22.70	26.11	90.57	7.31	49.88
Trend 1990-2022	-50%	-46%	-19%	51%	-63%

3.1.1. NOx emissions

Emission trend

In 1990 national total NOx emissions amounted to around 46 kt. Since then, the emissions decreased by 50%. In 2022 emissions were on the level of about 22.69 kt. The trend is variable but with minor pics and deeps until 2021. The sharp fall of emissions between 2012 and 2015 is owned to the lower consumption of coal in the major power plants and the modernization of boilers in the power plant REK Bitola. In the period 2016–2018, the emissions are stable. Compared to 2022, emissions in 2021 are higher for 8% due to higher emissions in Transport, Industry and Agriculture sector.

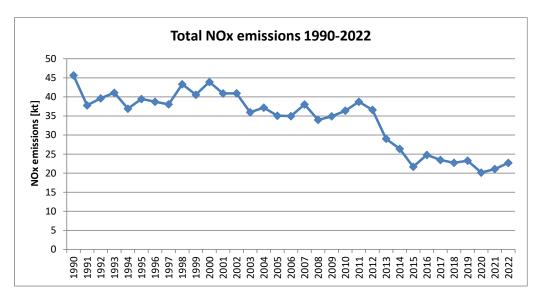


Figure 6 National total NOx emissions 1990-2022

The target value for NOx according to the Gothenburg Protocol for the year 2010 is 39 kt. Republic of North Macedonia which is party to the UNECE Gothenburg protocol since 2014 regularly meets that target value and starting from this year the emissions trend is stable. The country is also in compliance with the Protocol in controlling the nitrogen oxides or their trans-boundary fluxes, meaning that NOx emissions in 2022 are less than the NOx emissions reported for 1987. With regards to LCPs, according to the NERP prepared under Energy community agreement, the emissions from LCPs were below national emission ceiling for 2022, which is 9.838Gg.

Main emission sources in North Macedonia

Almost all NOx emissions are coming from the sector Energy. Namely, the main emission sources in 2022 are NFR source categories: 1.A.3 Transport, 1.A.1 Energy Industries and 1.A.2 Manufacturing Industries and Construction which contributed with 42% (21% in 1990), 28% (53% in 1990) and 21% (20% in 1990) respectively, of the national total NOx emissions. Due to the increase of the number of vehicles during the reporting period and the lower consumption of coal as well as heavy fuel oil during the reporting period, the primary source of emissions in 2022 is found to be transportation, as

opposed to 1990, when the energy sector and heat production were the largest source of emissions. The Contribution of NFR source category 1.A.2 - Manufacturing Industries is 21% and has not changed significantly in comparison to the value in 1990 of 20%. NFR sectors 1.A.4 Other sectors and 3.Agriculture contribute with 6% and 2% respectively while 1.B Fugitive emissions, 2 Industrial Processes and Product Use and 5 Waste are minor sources of NOx emissions.

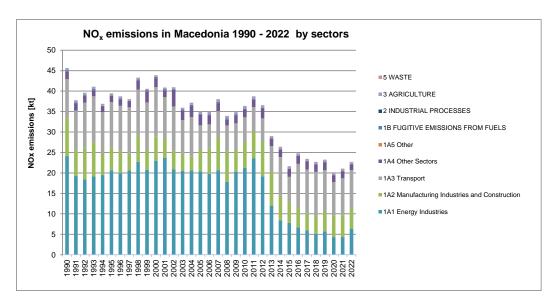
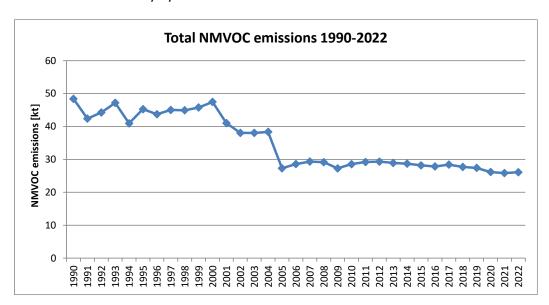



Figure 7 NOx emissions in North Macedonia 1990-2022 by sectors

3.1.2. NMVOC emissions

Emission trend

In 1990, the total national NMVOC emissions amounted to about 48 kt. Compared to 2022, the emissions are down by 46% amounting to around 26 kt. Calculated emissions in 2022 compared to 2021 emissions increased only by 1.

Figure 8 National total NMVOC emissions 1990-2022

Target value for NMVOC according to Gothenburg Protocol for year 2010 is 30 kt NMVOC. The emissions in 2022 are below the target value by 13%. The country is also in compliance with the Protocol on the control of volatile organic compounds or their Trans boundary fluxes since 1988, NMVOC emissions (48 kt) in 2022 in amount of 26.11 kt are reduced by 44% compared to 1988.

Main emission sources in North Macedonia

NMVOC emissions are emitted from different sources. The key category source in 2022 are NFR source categories is 2 Industrial pollution, contributing with 36% (24% in 1990) followed by 1.A.4 Other Sectors (mainly residential heating) and 1B (fugitive emissions), which contributed with 21% (22% and 9% in 1990, respectivly), to the national total NMVOC emissions. Agriculture is contributing with around 13%, while fugitive emissions are impacting the NMVOC emission with around 13%. NFR source category 1.A.3 Transport and 1.A.2 contributed with 5% and 2% of total calculated national NMVOC emissions, repectevly.

NFR categories 1.A.1.a, 1.A.1.b and 1.A.5.b are minor sources of NMVOC emissions.

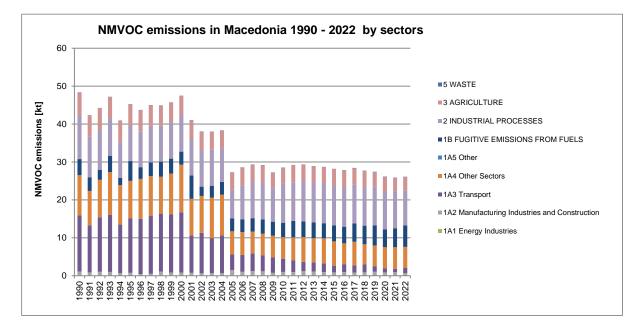


Figure 9 NMVOC emissions in North Macedonia 1990-2022 by sectors

3.1.3. SO₂ emissions

Emission trend

In 1990, the national total SO_2 emissions amounted to 112 kt. In the period 2011–2016 there was a decrease of emissions due to the decrease of coal consumption and lower capacity of work of the second largest (by capacity) power plant REK Oslomej (from 12 to 5 months), attributed to limited amounts of coal. In 2019 there is a sharp increase due to increased use of coal with higher sulfur content and higher production of electricity compared to 2018. But in 2020 the emissions are again decrease due to lower consumption of coal and heavy fuels, but not on the level of 2018. Compared to 2021, the emissions in 2022 are increased by 2%, and compare to 1990 emissions decreased by 19%.

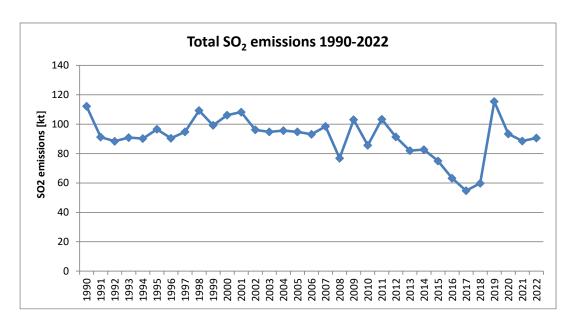


Figure 10 National total SO₂ emissions 1990-2022

North Macedonia is a party to the three protocols, under LRTAP convention, concerning sulfur. The emissions of sulfur dioxide in 2022 are below the base year 1990 emissions and the respective ceiling in 2010, which reflects compliance with the 1994 Protocol on further reduction on sulfur and the Gothenburg protocol.

The country is still in non-compliance with the 1985 Protocol on reduction of sulfur emissions or their trans-boundary transmission by at least 30 percent, because the emissions have not been reduced by the designated percentage between now and 1980. Because the major source of this pollutant is power production, compliance with the oldest protocol on sulfur is expected to be achieved with installation of a desulfurization unit in the Power plant REK Bitola. According to the agreement with the Energy community, the compliance with SOx emission limit values, which will also mean compliance with the protocol, should be reached with implementation of a desulfurization unit, that should be implemented in accordance with the time dynamics set in the revised National Plan for reduction of emissions from large combustion plants approved by the Government in April 2017. With regards to LCPs, the emissions in 2022 were not below national emission ceiling of 15.855 Gg, indicating that compliance with the set limit values was not reached. In 2022 SOx emissions have not reached values below the emission ceiling defined in the NERP since desulfurization unit is still not implemented in the major power plant.

Main emission sources in North Macedonia

Almost all SO_2 emissions are resulting from Energy sector. Consequently, the main emission source in 2022 is as expected NFR source category 1.A.1 Energy Industries (Public electricity and heat production), which contributed with 92% in 1990, and with 96% in 2022 of the national total SO_2 emissions. About 5% in 1990 and 3% in 2022 of the total emissions are stemming from NFR source category 1.A.2 Manufacturing Industries.

Other NFR sectors produce minor SO₂ emissions.

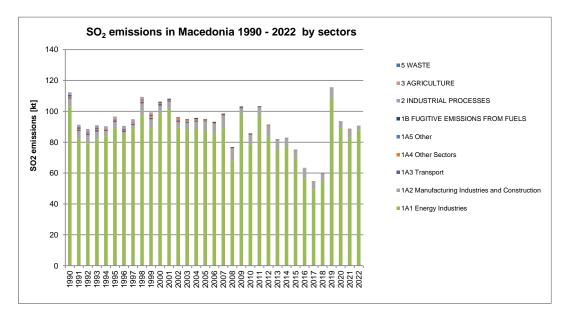


Figure 11 SO₂ emissions in North Macedonia 1990-2022 by sectors

3.1.4. NH₃ emissions

Emission trend

In 1990 national total NH_3 emissions, amounted to about 14.7 kt. In 2022, the emissions were down by 51% compared to 1990, amounting to 7.3 kt (note: "In the Reporting table the total amoint of ammonia is reported as 8.3 kt due to omitted number +1 in the calculation excel sheet for the 1.A.4 category"). Main reasons for the decline are decreasing emissions from Agriculture (Manure Management) related to decreasing livestock numbers. From 2021 to 2022 emissions decreased by 4%.

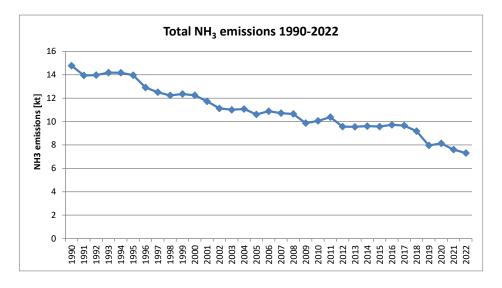


Figure 12 National total NH₃ emissions 1990-2022

Emissions of NH₃ are well below the respective ceiling. Emissions in 2022 were below national ceiling value (12 Gg NH₃) for 2010.

 NH_3 emissions are mainly resulting from the agriculture sector contributing with 96% (98% in 1990) to national total NH_3 emissions. Within Agriculture sector, NH_3 is almost exclusively emitted by source category 3.B Manure Management (53% in 2022) and emissions from cattle (28%). NFR sectors 1.A.4 Other sectors 1.B Fugitive emissions. 1.A.3 Transport and 2. Industrial processes are minor sources of NH_3 emissions.

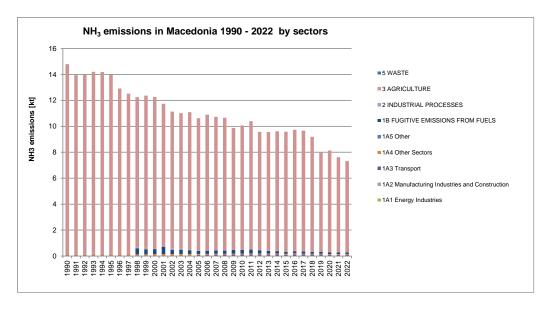
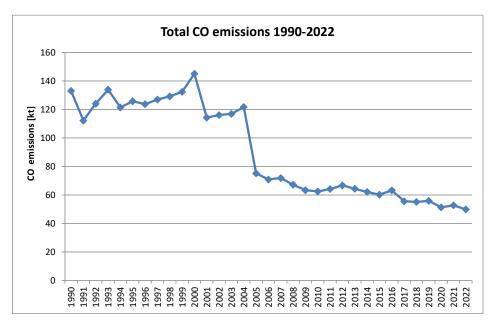



Figure 13 NH₃ emissions in North Macedonia 1990-2022 by sectors

3.1.5. CO emissions

Emission trend

In 1990 the national total CO emissions amounted to 133.11kt. The decreasing trend started in 2000 and could be attributed to lower solid fuel consumption in 1.A.4 sector, but the trend is not stable. In 2022, the emissions amounted at 50 kt and decreased by 63%. From 2021 to 2022 emissions are increased by 5% due to increased emissions in sector Industrial processes.

Almost all CO emissions are resulting from the Energy sector. As a Result, the main emission sources in 2022 are NFR sectors 1.A.4 Other Sectors (residential heating) and 1.A.3 Transport, contributing with 67% (51% in 1990) and 12% (39% in 1990) following by 1.A.2 Manufacturing Industries to the national total with 8% (5% in 1990). Further smaller emission sources in 2022 are 5 Waste and 1.A.1 Energy Industries with shares 7% and 4% respectively.

NFR sectors 1.B Fugitive emissions, 2 Industrial Processes and Product Use and 1A.5.Other sources are considered as minor sources of CO emissions.

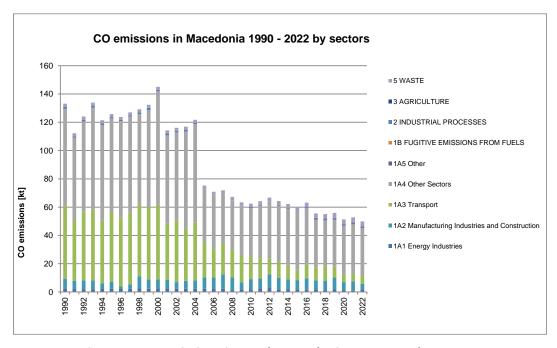


Figure 15 CO emissions in North Macedonia 1990-2022 by sectors

3.2. Emission Trends for Particulate Matter

Particulate Matter emissions in North Macedonia mainly originate from energy industries, residential heating, and industrial processes. Emission trends and the main sources are described in more detail for PM10, PM2.5 and TSP in the following sections.

Year	Emissions					
	PM2.5 [kt]	PM10 [kt]	TSP [kt]	BC [kt]		
1990	32.61	48.01	60.99	3.03		
1991	28.56	42.10	53.24	2.64		
1992	34.91	50.44	62.45	3.31		
1993	31.25	44.80	55.81	2.93		
1994	29.21	42.38	53.25	2.67		
1995	29.49	43.00	54.23	2.70		

W	Emissions						
Year	PM2.5 [kt]	PM10 [kt]	TSP [kt]	BC [kt]			
1996	32.42	47.43	60.00	3.02			
1997	31.50	46.05	57.87	2.87			
1998	35.91	52.56	66.18	3.30			
1999	31.11	45.07	56.88	2.83			
2000	29.99	43.51	57.12	2.73			
2001	18.55	28.01	37.08	1.47			
2002	19.07	28.42	37.02	1.63			
2003	29.34	42.29	53.14	2.60			
2004	31.72	45.78	57.56	2.87			
2005	24.06	37.22	48.59	2.43			
2006	21.67	33.82	44.18	2.16			
2007	17.39	27.63	36.63	1.76			
2008	18.11	28.26	37.51	1.86			
2009	12.81	22.17	31.86	1.24			
2010	15.86	28.16	35.29	1.65			
2011	21.71	35.33	47.62	2.15			
2012	21.41	34.28	46.23	2.19			
2013	23.73	37.06	50.31	2.44			
2014	17.05	26.64	37.17	1.76			
2015	14.71	22.16	27.78	1.47			
2016	12.98	19.58	24.69	1.41			
2017	8.94	14.14	18.39	1.02			
2018	8.62	14.40	17.51	0.98			
2019	8.94	13.88	17.87	1.03			
2020	8.84	13.68	17.59	1.01			
2021	8.79	13.47	17.55	1.04			
2022	8.41	13.54	17.93	0.97			
Trend 1990–2022	-74%	-72%	-71%	-68%			

3.2.1. PM10 emissions

Emission trend

In 1990, national total PM10 emissions amounted to 48 kt. Since then, the emissions are continuously decreasing, reaching a level of 13.53kt in 2022 or a decrease of 72% compared to 1990. The main reason for the decrease is declining emissions from Industrial Processes (Ferroalloys Production), but also decreased use of solid fuels since 2013. Namely the deep presented in the period 2001-2002 is due to limited operation of Ferroalloys production industry. The Ferroalloys production has decreased because of a limited capacity of an installation producing ferrosilicon, between the end of 2014 and

during 2015. This installation did not fulfill the obligation regulated in the IPPC license for installation of a filter for reduction of dust emissions. Additionally, this installation has been closed in November 2016 due to non-compliance with the activities for air quality protection set down in the IPPC permit referring to installation of dust filter. After 2017 there is steady trend with minor decrease up to 2021. In 2022 there is only minor increase of 0.5%.

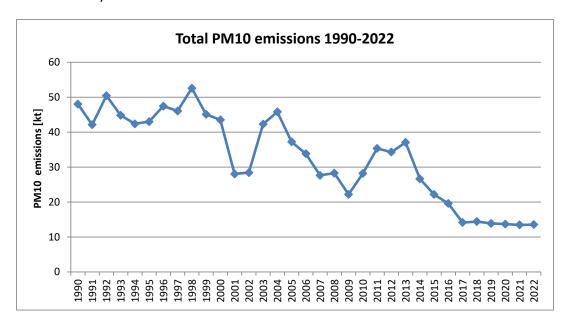


Figure 16 National total PM10 emissions 1990-2022

Main emission sources in North Macedonia

The main emission sources for PM10 in 2022 are NFR sectors 1.A.4 Other Sectors (residential and administrative heating), with a share of 48% (25% in 1990) in total PM10 emissions. 2 Industrial Processes and Product Use (mainly 2.C.2 Ferroalloys Production) with 8% (48% in 1990) and 1.A.1 Energy Industries with 21% (18% in 1990). With a share of 16% in 2022 (6% in 1990), the sector Agriculture is also contributing to the total PM10 emissions. As a result, a conclusion can be drawn that while in the past the major source for PM10 was the industry sector, mainly ferroalloys production, in the latest years that the major contributor is combustion of fuels in residential sector and administrative capacities — NFR 1.A.4 Other Sector. Transport sector as well as 1.A.2 manufactoring industries and construction are contributing with 4% in PM10 on national level. However, the transport sector has higher impact on local emissions and air quality according to PMF analysis.

NFR sectors 1B Fugitive emissions and 5 Waste are minor sources of PM10 emissions.

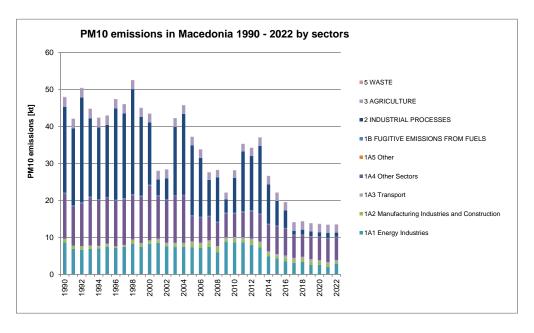


Figure 17 PM10 emissions in North Macedonia 1990-2022 by sectors

3.2.2. PM2.5 emissions

Emission trend

In 1990, national total PM2.5 emissions amounted to 33 kt. In 2022, compared to 1990 the emissions decreased by 74%, amounting to 8.4 kt. The main reason for the decrease is a decline of emissions from Industrial Processes (Ferroalloys Production) as well as from combustion of solid fuels from 1.A.4 due to increased use of clean fuels compared to solid fuels, like coal and biomass. For the years 2001, 2002 and 2009 emissions are very low compared to the other years. The reason is also due to low emissions from Ferroalloys Production, since in those years the company for production of ferrosilicon was operating with limited operating hours. The ferroalloys production has decreased because of the limited capacity of the installation producing ferrosilicon from the end of 2014 and during 2015, as this installation did not fulfill the obligation regulated in the IPPC license for installation of filter for reduction of dust emissions. Additionally, this installation has been closed in November 2016 due to non-compliance with the activities for air quality protection set down in the IPPC permit referring to installation of dust filter. Throughout the years, emissions from solid fuel combustion as well decreased affecting lower national emissions from particulates. After 2017 there is steady trend with minor decrease up to the last reporting year. In 2022 there is decrease of emissions up to 4%.

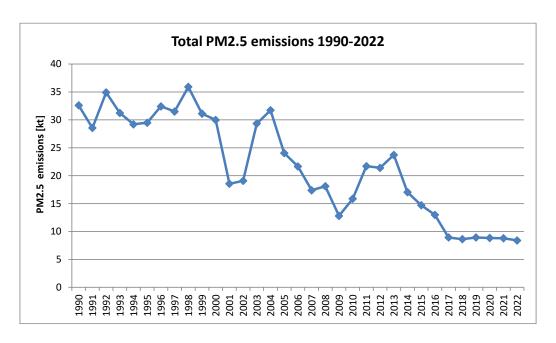
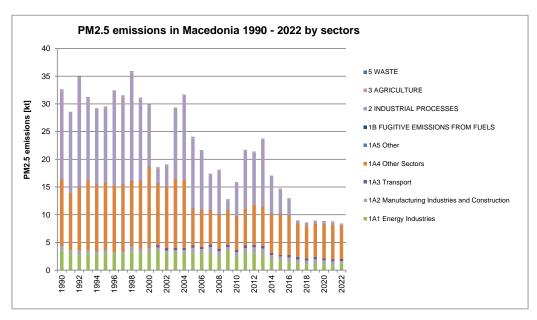
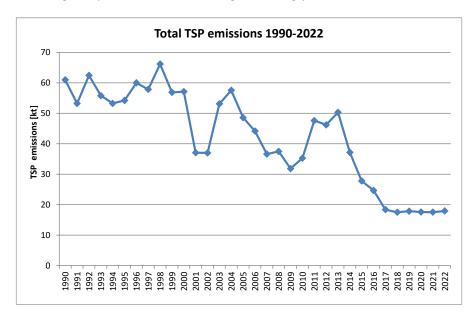


Figure 18 National total PM2.5 emissions 1990-2022

Like PM10, the main emission sources for PM2.5 in 2022 are NFR sectors 1.A.4 Other Sectors (residential heating) with a share of 71% (36% in 1990) in total PM2.5 emissions. The NFR category 1.A.1 Energy Industries with 14% (11% in 1990) and the contribution of the NFR sector - 2 Industrial Processes and Product Use (mainly 2.C.2 Ferroalloys Production) is very low, contributing only with 2% (49% in 1990). Manufacturing industry and Constructions 1.A.2 are contributing with 6% in 2022 while in 1990 the contribution was only 3%. Transport is contributing with 5% and Agriculture with 1.8%. Compared to PM10, the contribution of 1.A.4 and Energy industries is higher while the contribution from 1.A.1 Energy industries and Manufacturing industry and Constructions 1.A.2 is lower. NFR sectors 1B Fugitive emission and 5 Waste are minor sources of PM2.5 emissions.




Figure 19 PM2.5 emissions in North Macedonia 1990-2022 by sectors

3.2.3. TSP emissions

Emission trend

In 1990, the national total TSP emissions amounted to about 61 kt. In 2022, the emissions decreased by 71% compared to 1990 amounting to about 18 kt. The main reason for the decrease is a decline of emissions from Industrial Processes (Ferroalloys Production), but also the decline of emissions coming from the 1.A.4 category due to reduced use of solid fuels. In 2022, the emissions are increased by 2% compared to 2021 emissions.

The reasons for decreasing trend in the last three years correspond to the reasons explained in the subchapter for PM10. With regards to LCPs, according to the NERP aligned with the Energy Community Treaty, the emissions in 2022, exceeded the national emission celling for TSP with a value of 1.738 Gg, and thus not reaching compliance with this ceiling accordingly.

The main emission sources for TSP in 2022 are 1.A.4 Other Sectors (residential heating) with 36% (21% in 1990) and 1.A.1 Energy Industries with 24% (21% in 1990). NFR sectors 2 Industrial Processes and Other Product Use (mainly NFR sector 2C2 Ferroalloys Production) with a share of 16% (49% in 1990) in total TSP emissions. Thus, it can be concluded that in the past the major source for TSP national emissions was the industry sector, mainly ferroalloys production, while in the latest years the major source is a consequence of the combustion of fuels in residential sector and administrative capacities – NFR 1.A.4. Agriculture is contributing with 15%, the category 1.A.2 is contributing with 3%, and Transport with 4%, while other categories are minor sources of this pollutant.

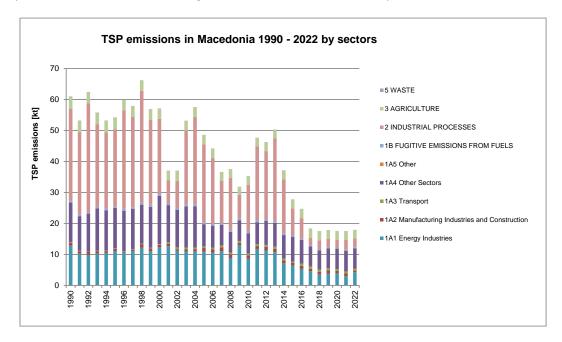


Figure 21 TSP emissions in North Macedonia 1990-2022 by sectors

3.2.4. BC emissions

Emission trend

In 1990, national total BC emissions amounted to about 3 kt. In 2022, the emissions decreased by 68% compared to 1990, amounting to about 1 kt. The main reason for the decrease is a decline of emissions of PM2.5. The trend has similar pathway as that one for PM2.5 due the fact that for BC emissions are calculated as given contribution in PM2.5 expressed in %. Further explanation of the trend is given in PM2.5 chapter.

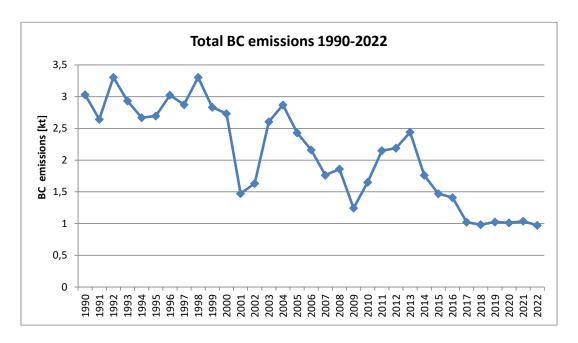


Figure 22 National total BC emissions 1990-2022

As expected, the main emission sources for BC are those for PM2.5. In 2022 the NFR sectors 1.A.4 Other Sectors (residential heating) contributed with a share of 65% (40% in 1990) in total BC emissions. Transport is contributing with 17%, while 1.A.2 Manufacturing industry and constructions contributed with 13% (9% in 1990) of the total BC emissions, whereas 2 Industrial Processes and Product Use (mainly 2.C.2 Ferroalloys Production) contributed with around 0.4% (50% in 1990), while Waste sector contributed with 2% in 2022 and 1% in 1990.

NFR sectors 1.A.1 Energy industries and 1.B Fugitive emissions are minor sources of PM2.5 emissions.

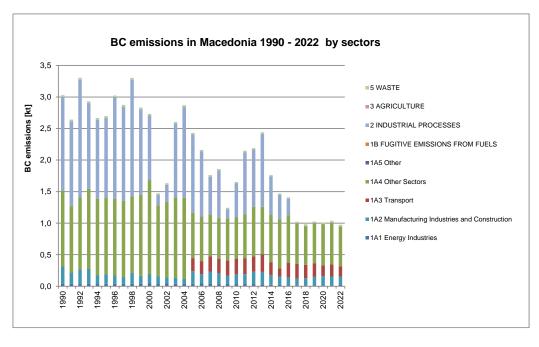


Figure 23 BC emissions in North Macedonia 1990-2022 by sectors

3.3. Emission trends for Heavy Metals

In the following table the trends of the three priority heavy metals are presented. The detailed trend descriptions as well as the main emission sources for the respective air pollutants are provided in the following sections.

Table 27 Emission trends for heavy metals 1990-2022

v	Emissions					
Year	Cd [Mg]	Hg [Mg]	Pb [Mg]			
1990	0.67	1.61	232.53			
1991	0.62	1.51	196.71			
1992	0.57	1.46	227.59			
1993	0.54	1.06	212.78			
1994	0.46	1.02	203.78			
1995	0.48	2.11	222.28			
1996	0.54	2.32	229.66			
1997	0.57	1.15	244.69			
1998	0.63	1.39	259.96			
1999	0.57	1.07	208.31			
2000	0.59	0.93	195.49			
2001	0.62	0.82	172.39			
2002	0.65	0.81	170.79			
2003	0.49	0.60	131.99			
2004	0.48	0.54	45.69			
2005	0.36	0.28	6.45			
2006	0.37	0.26	7.01			
2007	0.40	0.26	7.50			
2008	0.38	0.26	6.43			
2009	0.33	0.25	5.72			
2010	0.34	0.25	5.97			
2011	0.38	0.26	6.49			
2012	0.36	0.27	5.38			
2013	0.31	0.24	4.23			
2014	0.31	0.24	4.72			
2015	0.30	0.24	4.45			
2016	0.27	0.24	2.77			
2017	0.26	0.22	2.62			
2018	0.23	0.22	2.71			
2019	0.26	0.24	232.53			
2020	0.20	0.22	196.71			
2021	0.21	0.23	227.59			

	Emissions				
Year	Cd [Mg]	Hg [Mg]	Pb [Mg]		
2022	0.19	0.23	212.78		
Trend 1990-2022	-86%	-71%	-99%		

Republic of North Macedonia in 2022 did not exceed emission levels set in HM Protocol. Emissions are much below the values from the reference year 1990.

3.3.1. Lead (Pb) emissions

Emission trend

National total Pb emissions amounted to 232 t in 1990; emissions have decreased steadily, and in 2022 emissions were down to 2.22 t. The most important reductions could be observed in sectors 1.A.3 Transport and 2 Industrial Processes and Other Product Use (mainly Lead Production). The big decline in the trend of Pb emissions from 2003 and 2004 is related to the main source of these emissions — Road transport and Lead production. From 2004 the content of Pb in the gasoline decreased from 0.0006 kg/l to 0.00015 kg/l. Also, in 2003 the Pb-Zn smelter "Zletovo" — Veles stopped the lead production, and zinc. From 2006 in North Macedonia, passenger cars can use only unleaded gasoline fuels which additionally reduced the Pb emissions.

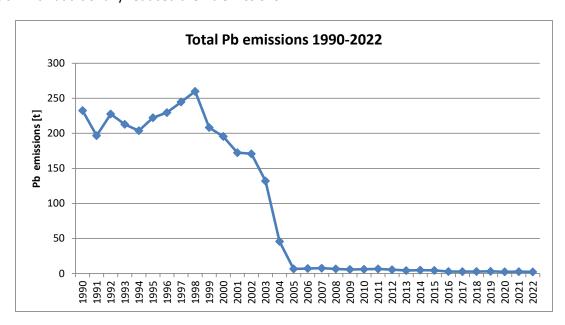


Figure 24 National total Pb emissions 1990-2022

Main emission sources in North Macedonia

The most important emission sources of Pb in 2022 are NFR sectors 1.A Energy with shares in national total emissions of 21% from 1.A.2 in share of 17%, other sectors 1.A.4 in share of 27%, and industrial process in share of 18%. In 1990 the situation was different. The key factor contributing to the emissions was the industry with 59% and use of leaded petrol in transport sector which led to contribution of NFR 1.A.3 with 39%. In 2022 the share of transport sector in lead emissins is 13%. Back then, the energy sector, meaning 1.A.1, 1.A.2 and 1.A.4 were minor sources. Within NFR sector 2 Industrial Processes and Product Use, all Pb emissions result from 2.C Metal Production (2.C.1 Iron

and Steel Production) with a share of 59% in 1990 and 18% in 2022. The declined values are a result of the elimination of the use of leaded petrol in 2004. The reduction of 99% compared to 1990 is due to the elimination of the use of leaded petrol and reduction of lead emissions from lead production. However, since EF used for calculation of Pb emissions up to 2004 are not documented, there is a high uncertainty of estimation of lead emissions in 1.A.3 transport and these emissions should be recalculated with the use of COPERT V model. The contribution of Pb emissions coming from Agriculture sector is 3% while the sectors 1.B Fugitive Emissions and 5 Waste are minor sources in emissions of this pollutant.

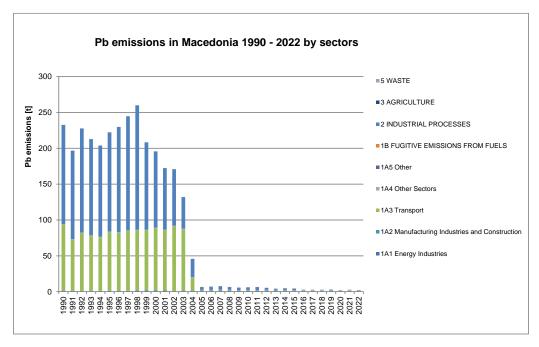


Figure 25 Pb emissions in North Macedonia 1990-2022 by sectors

3.3.2. Cadmium (Cd) emissions

Emission trend

National total Cd emissions amounted to 1.6 t in 1990; emissions have decreased steadily, and, in the year, 2022 emissions were estimated to be 0.23 t, which means they were down by 86% compared to 1990. The most important reductions could be observed in sector 2 Industrial Processes and Other Product Use (Metal Production), as Zinc Production was stopped in 2003. Between 2021 and 2022, cadmium emissions decresed by 15% due to lower emissions in the comnustion processes in industry.

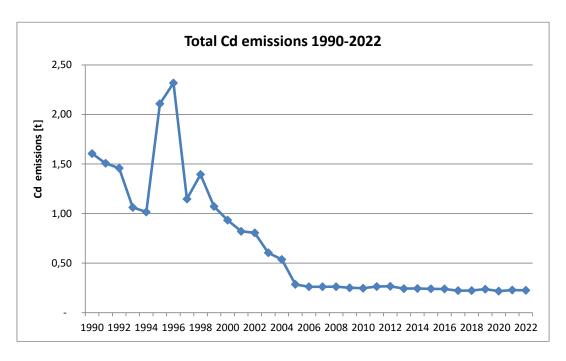


Figure 26 National total Cd emissions 1990-2022

The most important emission source in 2022 of Cd is in the national total emissions is NFR sector 1 Energy is contributing with the following NFR categories: 1.A.4 Other Sectors Energy with 47% (13% in 1990), following by 1.A.1 Energy Industries, with a share of 27% (7% in 1990), and NFR category 2 Industrial Processes and Product use contributing with 14% (79% in 1990). The 1.A.2 Manufacturing Industries is contributing with 7% (1%), while 5 Waste sector is contributing with 4.%.

Cd emissions from NFR sectors 1.B Fugitive Emissions and 3 Agriculture and are minor sources.

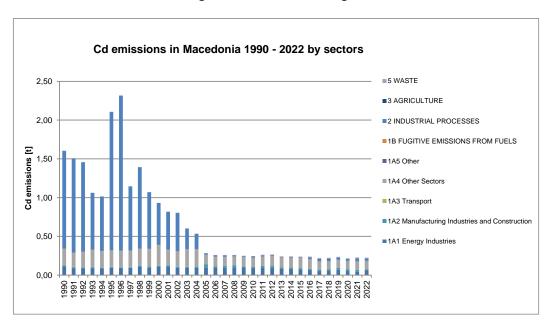


Figure 27 Cd emissions in North Macedonia 1990-2022 by sectors

3.3.3. Mercury (Hg) emissions

Emission trend

National total Hg emissions amounted to 0.67 t in 1990; emissions have decreased steadily and in the year 2022 emissions (0.19t) were down by 71% compared to 1990 emissions. The most important reductions could be observed in sector 2 Industrial Processes and Other Product Use (Metal Production), as Zinc production stopped in 2003. Also, fugitive emissions have been reduced significantly. Between 2021 and 2022 total Hg emissions decreased by 8%, due to lower emissions coming from 1A2 Manufacturing Industries and construction.

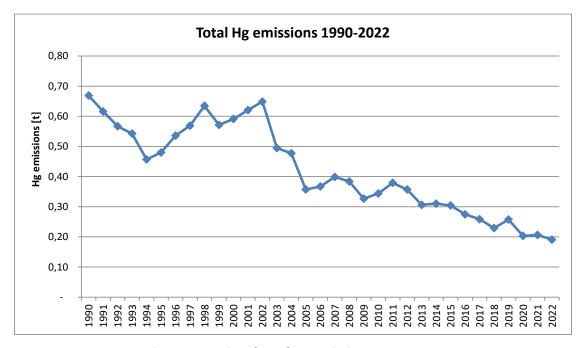


Figure 28 National total Hg emissions 1990-2022

Main emission sources in North Macedonia

The most important emission source in 2022 of Hg is NFR sector 1 - Energy. Within the Energy sector, the main contributors in 2022 are 1.A.1 Energy Industries with a share of 46% (26% in 1990) and 1.A.2 Manufacturing Industries and Construction with 27% (9% in 1990) of the national total emissions. NFR category 2 Industrial Processes and Product use is also one of the key sources with 20% (63% in 1990) of the national total mercury emissions. In 2022, also 2.5% of total mercury emissions are stemming from sector 5 Waste, while this sector has minor contribution in 1990, and 3% Hg emissions are coming from NFR sectors 1.A.4 - Other sectors and 2% from Transport. NFR sectors 1.B Fugitive Emissions and 3 Agriculture are minor sources in the whole trend period.

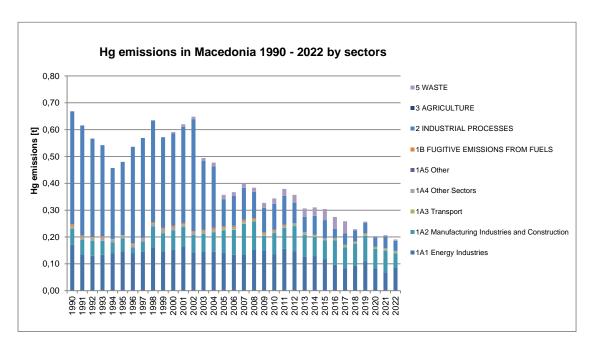


Figure 29 Hg emissions in North Macedonia 1990-2022 by sectors

3.4. Emission trends for POPs

In the following table the trends of the POPs are presented. The detailed trend descriptions for the respective pollutants are provided in the following sections.

Table 28 Emission trends for POPs 1990-2022

		Emissions					
Year	HCB [kg]	PCDD/F [g - I TEQ]	PAHs [t]	PCB [kg]			
1990	44.29	19.81	7.17	381.18			
1991	39.22	17.62	6.38	382.73			
1992	25.83	17.70	6.79	382.95			
1993	24.18	17.29	7.24	369.80			
1994	25.04	15.87	6.68	340.60			
1995	18.63	18.91	6.78	355.78			
1996	19.70	18.73	6.28	384.21			
1997	27.89	16.00	6.52	396.25			
1998	29.34	17.60	7.19	403.01			
1999	53.97	17.18	7.20	366.49			
2000	38.32	23.93	8.17	342.85			
2001	34.15	25.40	6.57	332.37			
2002	52.68	27.01	6.59	330.10			
2003	42.98	28.01	7.25	287.40			
2004	8.52	30.63	7.31	240.53			
2005	7.54	26.87	4.84	207.01			
2006	11.67	25.20	4.95	207.78			

	Emissions			
Year	HCB [kg]	PCDD/F [g - I TEQ]	PAHs [t]	PCB [kg]
2007	8.87	26.56	5.14	208.58
2008	7.74	25.87	4.82	208.28
2009	8.28	27.34	4.16	208.07
2010	9.58	29.55	4.47	208.85
2011	10.50	35.77	4.68	209.21
2012	9.47	38.99	5.13	209.19
2013	6.35	40.11	4.87	209.02
2014	4.19	39.99	4.69	209.48
2015	0.96	49.52	4.75	216.33
2016	0.77	51.12	4.69	220.78
2017	2.06	51.53	3.99	228.69
2018	1.53	8.96	3.94	236.92
2019	4.43	9.49	4.26	238.14
2020	0.16	8.76	3.91	236.77
2021	0.16	9.43	4.15	238.29
2022	0.15	8.50	3.61	242.31
Trend 1990-2022	-100%	-57%	-50%	-36%

From the figures presented in the previous table a conclusion can be drawn that Republic of North Macedonia in 2021 did not exceeded the emission levels set in POPs Protocol. In the case of HCB, the emissions are much lower than the values from the reference year 1990.

3.4.1. PAH-4 emissions

Emission trend

National total PAH-4 emissions in 1990 amounted to 7.16 t. Since then, the emissions have been quite stable and in the year 2022 emissions were at level of 3.61 t, reflecting a reduction of 50%. The most important reductions could be observed in the sector for residential heating. Between 2021 and 2022, total PAH-4 emissions decreased by 13%, because of increased emissions from residential heating in the NFR 1.A.4 - Other sectors. Data from 2005 have been revised in MAKSTAT database which is one of the reasons for the sharp drop down.

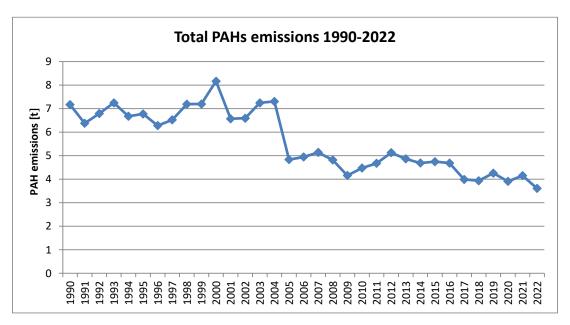


Figure 30 National total PAHs emissions 1990-2022

The most important emission source in 2022 of PAHs is NFR sector 1 - Energy. Within the Energy sector the main contributor in 2022 is 1.A.4 Other Sectors (residential heating), with a share of 76%, while in 1990, this sector contributed with 79%. Furthermore, 1.A.2 Manufacturing Industries is contributing with a share of14% (12% in 1990) of the national total emissions. Waste sector is contributing with 5% in 2022 and 3. Agriculture with 4% in total PAHs emissions. NFR sectors 1.A.1 Energy industries and 2 - Industrial Processes and Product use are minor sources.

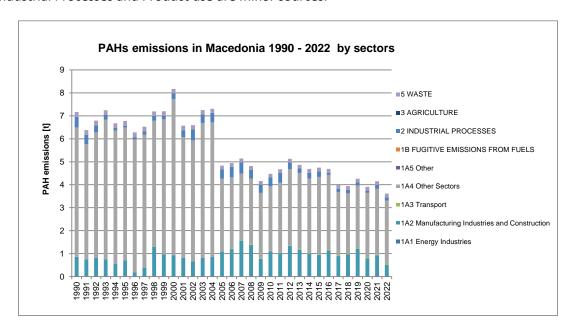


Figure 31 PAH-4 emissions in North Macedonia 1990-2022 by sectors

3.4.2. Dioxin and Furan emissions (PCDD/F)

Emission trend

National total dioxin/furan emissions amounted to 19.8 g-I-TEQ in 1990; emissions have decreased then and in the year 2022 emissions were down to around 8.5 g-I-TEQ, decreasing by 57% compared to 1990.

The emissions have increased continiusly since 2000 due to establishment of medical waste incineration. Emissions have been increasing until 2018, when dust filter has been established in the medical waste incineration plant. Between 2021 and 2022 total dioxin/furan emissions are slightly decreased by 10%.

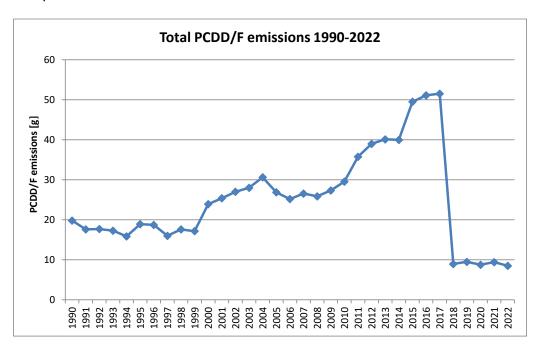


Figure 32 National total PCDD/F emissions 1990-2022

Main emission sources in North Macedonia

The most important emission source in 2022 of PCDD/F is NFR sector 1 - Energy. Within the Energy sector the main contributor in 2022 is 1.A.4 Other Sectors (mainly residential heating), with a share of 65% in 1990 and with share 75% in 2022. Furthermore, 1.A.2 Manufacturing Industries is contributing with a share of 6% (5% in 1990) in the national total emissions. NFR category 2 Industrial Processes and Product use (Metal Production) is also contributing with 9% (27% in 1990) of the national total PCDD/F emissions. In the period 2000-2017, Waste has been one of the key sectors as well.

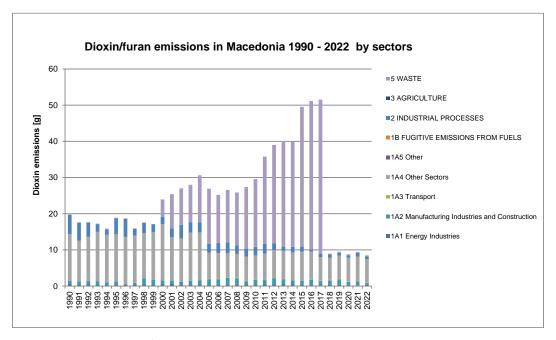


Figure 33 Dioxin/furan emissions in North Macedonia 1990-2022 by sectors

3.4.3. Hexachlor obenzene (HCB) emissions

Emission trend

National total HCB emissions amounted to 44 kg in 1990; emissions have decreased steadily since then and in the year 2022 emissions were down by 8%, compare to 2021 amounting to 0.15 kg. The emission peaks in 1999 and 2002 are due to higher activities of secondary aluminum production. The significant emission reduction between 2003 and 2004, is also caused by the aluminum production. From then onwards the emission level remained quite lower but still with mild fluctuations which depend on aluminum production. The most important reductions could be observed in the sector 2 Industrial Processes and Other Product Use (Aluminum Production). Due to higher activity data in aluminium production the emissions are higher in 2019 compared to 2018. But since 2020 since the emissions are sharply decreased due to the fact that the only installation for aluminum production went bankruptcy so no activity data were reported, and no emissions were calculated in this sector.



Figure 34 National total HCB emissions 1990-2022

During the period 1990-2022 the key emission source for HCB was NFR sector 2 Industrial Processes and Product Use. With a share of around 100% in 1990 of the national total emissions almost all HCB is emitted from this source and therefore dominating the trend. Within the category emissions are exclusively emitted from NFR sector 2.C.3 Aluminum Production. However, due to bankruptcy the main contribution to the HCB emissions in 2020-the most emissions in 2022 as in the previous two year most emissions are coming from 5 Waste secotr in amount of 70%, 1.A.4 Other sectors is the second key source in 2022 contributing with 27% and 1.A.2 Manufacturing Industries is minor source contributing with 3%.

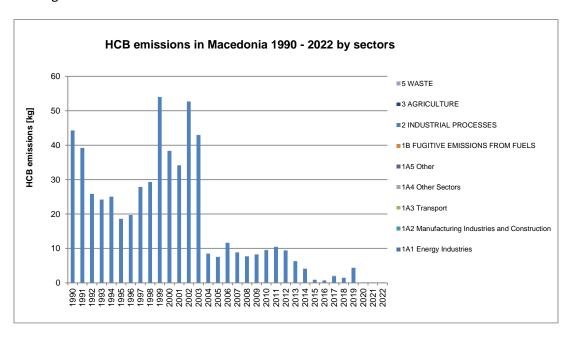


Figure 35 HCB emissions in North Macedonia 1990-2022 by sectors

3.4.4. Polychlorin ated biphenyl (PCB) Emissions

Emission trend

National total PCB emissions amounted to 382kg in 1990; emissions have decreased since then and in the year 2022 emissions were down by 36%, accounting to 242 kg. The trend emissions are not stable due to fluctuations in metal production – Lead and Zink production. This trend becomes stable in 2005 until 2014. In the last four years the emissions are continiusly increased due to use of Tier 2 methodology in 2.C sector and increased emissions from lead production.

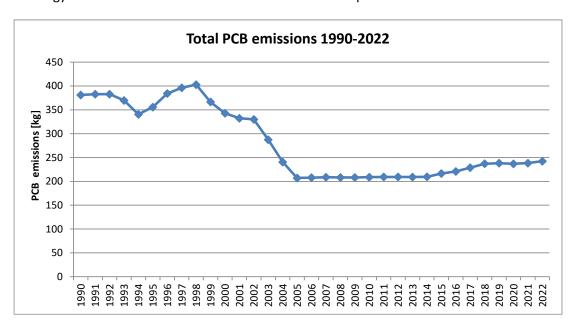


Figure 36 National total PCB emissions 1990-2022

Main emission sources in North Macedonia

The most important emission source in 2022 of PCB is NFR sector 2 Industrial Processes and Product Use. Within this sector, the main contributor is 2.C.5 Lead Production, with a share of around 99% (around 100% in 1990) of the national total PCB emissions. The main recalculations for this pollutant are emissions coming from NFR 2.K - Consumption of POPs and heavy metals (e.g., electrical, and scientific equipment), where population is taken as activity data as it was recommended by Stage 3 review carried out in 2020. PCB emissions from other NFR sectors are therefore minor. The additional key source in the nineties was the smelter company in Veles that has stopped production in 2003, and mainly this is influencing the trend, decrease starting in 2002 until 2005 and rather stable trend until 2014. There is small increasing trend in the last several years due to increased lead production as well as due to use of Tier 2 methodology in 2C sector and calculation of PCB emissions from road transport with Tier 2 methodology for the period 2014-2022.

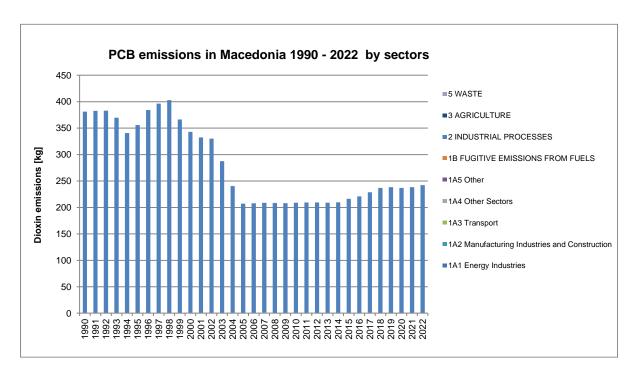
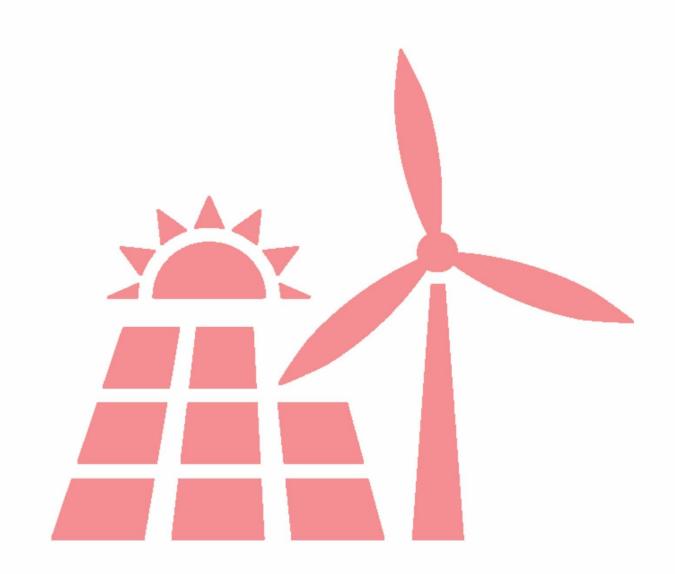



Figure 37 PCB emissions in North Macedonia 1990-2022 by sectors

4. ENERGY (NFR SECTOR 1)

4.1. Sector overview

This chapter gives an overview of category 1.A Stationary combustion activity. The energy sector is the most important sector considering that is a main contributor to the major air pollutants air emissions in the Republic of North Macedonia. Emissions from this sector arise from fuel combustion (NFR sector 1. A), and fugitive emissions from fuels (NFR sector 1. B). Following the recommendation of the previous stage 3 review to estimate emissions coming from NFRs 1.A.2.f, 1.A.3.e.i, 1.A.5.a and 1.B.2.d., the emissions under 1.B.2.d have been estimated; the notation key 1.A.2.f has been changed the to "IE" since the emissions from NFR 1.A.2.f are included in the emissions reported under NFR 2.A.1. NFR category 1.A.4.aii has been included in this submission while emissions from the categories 1.A.3.e.i, 1.A.5.a are still not estimated due to absence of activity data.

Completeness

The completed and not completed NFRs are presented in the following tables:

Table 29 NFR categories included in Energy sector for 2022

NFR category	Completeness
1 A 1 a Public electricity and heat production	٧
1 A 1 b* Petroleum refining	٧
1 A 2 a Stationary combustion in manufacturing industries and construction: Iron and steel	٧
1 A 2 b Stationary Combustion in manufacturing industries and construction: Non-ferrous metals	٧
1 A 2 c Stationary combustion in manufacturing industries and construction: Chemicals	٧
1 A 2 d Stationary combustion in manufacturing industries and construction: Pulp. Paper and Print	٧
$1\mathrm{A}2$ e Stationary combustion in manufacturing industries and construction: Food processing. beverages and tobacco	٧
$1\mathrm{A}2$ gviii Stationary combustion in manufacturing industries and construction: Other (Please specify in your IIR)	٧
1 A 2 f Stationary combustion in manufacturing industries and construction: Non-metallic minerals	IE
1 A 2 gvii Mobile Combustion in manufacturing industries and construction: (Please specify in your IIR)	٧
1 A 3 a i (i) International aviation LTO (civil)	٧
1 A 3 a i (ii) Domestic aviation LTO (civil)	٧
1 A 3 b i Road transport: Passenger cars	٧
1 A 3 b ii Road transport: Light duty vehicles	٧
1 A 3 b iii Road transport: Heavy duty vehicles	٧
1 A 3 b iv Road transport: Mopeds & motorcycles	٧
1 A 3 b v Road transport: Gasoline evaporation	٧
1 A 3 b vi Road transport: Automobile tire and brake wear	٧
1 A 3 b vii Road transport: Automobile road abrasion	٧
1 A 3 c Railways	٧
1 A 4 a i Commercial / institutional: Stationary	٧
1 A 4 a ii Commercial/institutional: Mobile	٧

NFR category	Completeness
1 A 4 b i Residential: Stationary plants	٧
1 A 4 b ii Residential: Household and gardening (mobile)	٧
1 A 4 c i Agriculture/Forestry/Fishing: Stationary	٧
1 A 4 c ii Agriculture/Forestry/Fishing: Off-road vehicles and other machinery	٧
1A5b Other Mobile (including military, land based and recreational boats)	٧
1 B 1 a Fugitive emission from solid fuels: Coal mining and handling	٧
1 B 2 a iv Refining / storage	٧
1 B 2 a v Distribution of oil products	٧
1 B 2 c Venting and flaring	٧
1 B 2 d Other fugitive emissions from energy production	٧
1 A 3 d ii National navigation (Shipping)	٧
Memo Items	
1 A 3 a i (ii) International aviation cruse(civil)	٧
1 A 3 a ii (ii) Civil aviation LTO (Domestic. Cruise)	٧
1A 3 Transport (fuel used)	٧

Table 30 NFR categories not included in Energy sector for 2022

NFR category	Notation key used
1 A 1 c Manufacture of solid fuels and other energy industries	NO
1 A 3 a ii (ii) Domestic aviation cruse (civil)	NO
1 A 3 d i (ii) International inland waterways	NO
1 A 3 e Pipeline compressors	NO
1A 4 c iii Agriculture/Forestry/Fishing: National fishing	NE
1 A 5 a Other stationary (including military)	NE
1 B 1 b Fugitive emission from solid fuels: Solid fuel transformation	NO
1 B 1 c Other fugitive emissions from solid fuels	NO
1 B 2 a i Exploration Production Transport	NO
1 B 2 b Natural gas	NO
Memo Items	
1 A 3 d i (i) International maritime navigation	NO
1 A 3 a ii (ii) Domestic aviation cruse (civil)	NO
1 A 5 c Multilateral operations	NE

^{*}Petrol refining is not occurring since 2014

The NFR categories 1A.4.c iii 1.A.5.a and 1.A.5.c are not estimated due to lack of activity data. These sectors seem not to have major impact on the national emissions and will be calculated or categorized as IE when activity data or information are made available in the future submissions.

Methodology

In general, the methodology is following the EMEP Tier 1 methodology, using default emission factors from the Guidebooks 2009/2013/2016/2019 and activity data from energy statistics. Plant specific emission data is considered for reporting of NO_X , SO_2 , CO and TSP within the following sectors:

1.A.1.a - 9 power plants (one heating plant and one power plant were not operating in 2020)

1.A.1.b - 1 refinery (not in operation since 2014)

1.A.2.f - 1 cement plant

The activity data is mainly taken from the national energy statistics published annually the website of the State statistical office. Fuel consumption for 1.A.1.a-categoty has been provided by plant operators. Complete energy statistics was only available for the years 1998-2010 and from 2012 onwards. For some of the missing years and for specific categories, energy consumption is particularly available from other sources (national reports, older printed versions of statistics). For some years, activity data has been gap filled, as described in the sector specific chapters. Until the year 2012, energy statistics only provides consolidated data on 'diesel and other'. As of 2013, separate data for road diesel and gasoil were available. In the MAKSTAT database the separate data for road diesel and gasoil are available starting from 2015 and historical data are now available starting from 2005.

Emission factors for this submission were updated with EF from the latest available Guidebook version 2019 during last reporting cycle. At current, the default (medium range) emission factors have been selected in all cases. Implied emission factors derived from the emission measurements have been used for source category 1.A.1.a for different periods due to technology improvements.

With regards to LHV, these values have been taken from energy balance or operators reports if they were reported in the respective annual reports. For coal mines in the country LHV - $6.36 - 7.7 \text{ TJ/}10^3 \text{ t}$ has been used, for imported coal $-8.29 \text{ TJ/}10^3 \text{t}$, for biomass this year separate LHV were used for fire wood $-6.7 \text{ TJ/}10^3 \text{ m}^3$, $10.66 \text{ TJ/}10^3 \text{ m}^3$ for fruit wood, for wood wastes, wood briquettes and pellets $-17.00 \text{ TJ/}10^3 \text{ t}$ for heavy fuel $-40/40.19 \text{ TJ/}10^3 \text{t}$, for heating oil and other gasoil $-42.5 \text{ TJ/}10^3 \text{t}$, for diesel $-43/42.71 \text{ TJ/}10^3 \text{t}$ for coke $-26.795 \text{ TJ/}10^3 \text{t}$, for other imported coal $-8.29 \text{ TJ/}10^3 \text{t}$, for natural gas $-33.588/34.12 \text{ TJ/}10^6 \text{ Nm}^3$. LPG $-46/46.05 \text{ TJ/}10^3 \text{t}$ and petroleum coke $-31.82 \text{ TJ/}10^3 \text{t}$.

4.2. Public electricity and heat production-NFR 1.A.1.a

This category includes emissions from thermal public power and district heating plants. Public electricity production is dominated by two large plants, which are using lignite as a major fuel and fuel oil as a supporting fuel, while natural gas is not widely used for power generation. District heating plants are operated using only natural gas. At current, biofuels are not used for power or district heat generation. In 2022, seven plants under this category were operating. Emissions from non-public district heat generation (industrial auto producers) are considered in the respective subcategories of 1.A.2 or 1.A.4.a.

As it was recommended by the last stage 3 review report, information on the existence of abatement technology in the IIR to further increase the transparency of the inventory is included.

Table 31 TPP and DHP Installation technical properties and BAT

Num.	Plant name	Technolog Y	Thermal input [MW]	Fuel type 1	Fuel type 2	BAT	NERP	Comments
1	REK BITOLA	Production of electricity	2025	Lignite	Heavy fuel oil	Modernization of blocs in 2013- 2014, reduction of NOx, dust and CO electrostatic filter for dust η=99,84 %	Yes	
2	REK OSLOMEJ	Production of electricity	375	Lignite	Heavy fuel oil	electrostatic filter for dust η=98 %	Yes	Since 2015 limited operation only few mountsin the heating season due to limited coal reservas.
3	TEC NEGOTINO	Production of electricity	630	Heavy fuel oil			No	Not in operation since 2014 it is used as cold reserve, Due to the energy crisis the installation was put in operation in December 2021.
4	Balkan Energy Toplana ISTOK	Heat production	294	Natural gas		Burners for low NOx insurance	Yes	
5	Balkan Energy Toplana ZAPAD	Heat production	183	Natural gas		In 2013 Heavy fuel oil has been replaced with natural gas. Burners for low NOx insurance	Yes	
6	Toplana Sever	Heat production		Natural gas			No	Not in operation
7	TE-TO	Combined Electricity and heat production	440	Natural gas		Ecological burners for low NOx insurance and stable combustion mode	No	
8	ELEM	Heat production	100	Natural gas			No	
9	KOGEL	Combined Heat and electricity production	90	Natural gas			Yes	Started in October 2019

4.2.1. Methodological issues

For the years 2008 onwards, NO_x, SO₂, CO and TSP measured emissions from the power plants and district heating plants are considered. Currently, emissions of these plants are based on periodical (monthly) measurements, which are carried out by accredited laboratories. Automatic monitoring system is present only in TE-TO power plant, and yearly emissions are calculated by means of flue gas concentrations and flue gas volumes and reported by the operators to the Ministry of Environment and physical planning. For lignite and fuel oil the NO_x SO₂ CO and TSP emissions from 1990 to 2007 are estimated by means of calculated implied emission factors which are derived from average 2009-2012 emissions and fuel consumption provided by plant operators. For natural gas emissions, from 1990 to 2007 the emissions are calculated with default Tier 1 emission factors as recommended in the Guidebook 2019.

Other pollutants (NH₃ heavy metals and POPs) are estimated by means of the EMEP 2019 default emission factors and fuel consumption. Due to modernization of power plants, in terms of reduction of NOx and dust, implied emission factors were derived for NOx and dust for the period 2013-2014,

and were used for calculation of NOX and TSP emissions for 2015-2017 while PM10 and PM2.5 emissions were calculated by applying the share of the Guidebook emissions factors. The share of PM10 in TSP is 68% and the share of PM2.5 is 27%.

Activity data

Activity data for fuel consumption have been provided by the plant operators. The lignite originates from inland mines and has a sulfur content of about 0.7% and very high-water content, up to 60%. Therefore, the NCV of lignite is only about 6-7 MJ/kg. Residual fuel oil (also called 'Mazut') has a sulfur content of 1% but in the early 1990s it was estimated that the sulfur content was up to 3%.

The following table shows activity data for category 1.A.1.a by type of fuel.

Table 32 Activity data for source category 1.A.1.a Public electricity and heat production by type of fuel

Year	Lignite (TJ)	Natural gas (TJ)	Residual fuel oil (TJ)
1990	58359	1000	2516
1991	45655	NO	3090
1992	44356	NO	2656
1993	45442	NO	3037
1994	47507	NO	2434
1995	49958	NO	2986
1996	47675	NO	3051
1997	49362	NO	3301
1998	55194	NO	2602
1999	50091	NO	2640
2000	51991	715	6345
2001	56387	673	3800
2002	48716	641	4286
2003	49091	345	2902
2004	49291	69	2936
2005	48711	52	3031
2006	45153	197	5152
2007	45697	895	6588
2008	52597	1627	1270
2009	50442	744	2267
2010	46386	1475	2330
2011	53111	1570	1431
2012	50549	974	1594
2013	43402	1522	1310
2014	44158	1633	1671
2015	39816	3258	1606
2016	32903	5653	1138

Year	Lignite (TJ)	Natural gas (TJ)	Residual fuel oil (TJ)
2017	28553	7456	933
2018	31523	6674	538
2019	37584	8290	687
2020	28740	9745	1073
2021	23445	9132	1462
2022	28794	7721	7223

The data for the fuel consumption in the reporting period shows that solid and liquid fuels are reduced, and the quantity of natural gas is increasing. However, residual fuel oil and lignite are increased in 2022 compare to 2021 due to activation of the cold reserve TEC Negotino. The consumption of lignate is also increased due to reparation of the bloks in REK Bitola.

Data on fuel consumption is reported by the installation in the format prescribed in the secondary legislation. Starting from 2008 onwards, emission measurements for the basic pollutants (SOx, NO, TSP and CO) were used but only if quality check is approved. In cases where the facility does not deliver emission measurements data, or the quality check of the emission measurement data is not reliable (for example in cases where the yearly emissions are calculated based on available measurements for several months), emissions for the basic pollutants are calculated by multiplying the implied emission factors the quantity of fuel consumed reported by the installations.

Emission factors

Emission factors for this source category are presented in the following table:

Table 33 Emission factors for source category Public electricity and heat production 1.A.1.a by type of fuel

Pollutant	Unit	Lignite	Natural gas	Heavy fuel oil
NO _x	g/GJ	389	89	389
NMVOC	g/GJ	1.4	2.6	2.3
SO ₂	g/GJ	1.678	0281	1.678
NH₃	g/GJ	NE	NE	NE
PM2.5	g/GJ	57.4	0.9	57.4
PM10	g/GJ	141.8	0.9	141.8
ВС	%PM2.5	1	2.5	5.6
TSP	g/GJ	210	0.89	210
со	g/GJ	43	2.5	43
Pb	mg/GJ	15	0.0015	4.56
Cd	mg/GJ	1.8	0.00025	1.2
Hg	mg/GJ	2.9	0.1	0.341
As	mg/GJ	14.3	0.12	3.98
Cr	mg/GJ	9.1	0.00076	2.55
Cu	mg/GJ	1	0.000076	5.31
Ni	mg/GJ	9.7	0.00051	255

Pollutant	Unit	Lignite	Natural gas	Heavy fuel oil
Se	mg/GJ	45	0.0112	2.06
Zn	mg/GJ	8.8	0.0015	87.8
PCDD/ PCDF (dioxins/furans)	ng I-TEQ/GJ	10	0.5	2.5
benzo(a) pyren	μg/GJ	1.3	0.56	NE
benzo(b) fluoranthene	μg/GJ	37	0.84	4.5
benzo(k) fluoranthene	μg/GJ	29	0.84	4.5
Indeno (1.2.3-cd) pyren	μg/GJ	2.1	0.84	6.92
РСВ	ng WHOTEG/GJ	3.3	NE	NE
НСВ	μg/GJ	6.7	NE	NE

Emission factors for the basic pollutants: NOx, SOx, CO and particulates for heavy fuel and coal are implied emission factors and are presented in tables below. For the use of natural gas and other pollutants EF from GB 2023 are used.

Emission measurements

These data were used for identification of implied emission factors. Data for the yearly emission measurements are reported by the operators in a template prescribed in the national sub legislation, until 31th March each year. Installations are reporting on NOx, CO, TSP and SOx measurements, but in case of power plants, implied EF are used also for these pollutants for coal and heavy fuel oil due to low coverage of measurements. For 2022 for these pollutants, the measurements received were converted to yearly emissions and presented in the NFR reporting table with exeption of SOx emissions. The measured emissions for TSP are used for calculation of PM10 and PM2.5 as 68 and 27% fraction from TSP.

Implied emission factors

The following table shows NO_x, SO₂, TSP and CO implied emission factors for category 1.A.1.a. by type of fuel for the years 2009 to 2012, and the mean value which has been used to calculate emissions from lignite and fuel oil 1990 to 2007. These emission factors were calculated with the support of Austrian energy expert in the Twining project "Further strengthening the capacities for effective implementation of the acquis in the field of Air Quality" that has been carried out in the period 2015-2017 in our Ministry. As proposed by the expert the implied EF for both heavy fuel and coal are same for the basic pollutants considered emission measurement data. The IEF were developed with the Austrian experts in the Twining project.

The problem was that only for several years there was good coverage of measurements (there is still no automatic monitoring for coal power plants), so these measurements were used to develop IEF. Default emission factors from the guidebook are not suitable since the coal is domestic. I the expert judgment to develop same emission factors from the measurements influence on less uncertainty than to use default emission factors for Guidebook."

Table 34 Implied Emission factors for source category Public electricity and heat production 1.A.1.a by using measurements data for period 2009 -2012

Year	NO _x (g/GJ)	SO₂(g/GJ)	TSP (g/GJ)	CO (g/GJ)
2009	374.42	1.827.26	241.57	33.13
2010	411.71	1.562.94	171.77	33.88
2011	411.34	1.736.47	213.54	44.27
2012	359.25	1.584.72	213.57	61.00
Mean-IEF	389.00	1.678.00	210.00	43.00

Implied emission factors for PM2.5 and PM10 are derived as 68% and 27% from TSP and are calculated to be 57.44 g/GJ and 105.4 g/GJ respectively.

For this submission NOx and TSP values were recalculated due to lower figures of monthly measurements which is infected by the modernization boilers in the power plants.

Table 35 Implied Emission factors for source category Public electricity and heat production 1.A.1.a by type of fuel for 2014-2017

Year	NO _x (g/GJ)	TSP (g/GJ)
2013	261.03	239.74
2014	100.66	70.92
Mean-IEF	181.00	155.00

Implied emission factors for PM2.5 and PM10 are derived as 68% and 27% from TSP and are calculated to be 41.85 g/GJ and 105.4 g/GJ respectively.

For 2022 the calculation of emission amounts of SO_2 is made using implied emission factors instead of using measured exhaust gas volume flows and emission concentrations of SO_2 , due to the large difference in the values of volume flows of exhaust gases, as well as high amounts of emissions even the amount of coal is decreased in the whole time.

The implied emission factors for SO_2 , are calculated as the mean value of the emission factors calculated for 3 consecutive years, 2019, 2020 and 2021, considering the input thermal power of the fuels in TJ and the emission amounts of the polluting substances for each year individually expressed in tons.

In the future, our assessment is that fully credible and reliable calculations for emission quantities of SO_2 , NOx and TSP, in tons, can be obtained if REK Bitola installs continuous monitoring of the volume flow of exhaust gases and emission concentrations of SO_2 , NOx and TSP, at measuring point and calibration of the automatic monitoring system according to international standards. Therefore, starting from 2022 implied emission factors will be used again.

4.2.2. Source-specific uncertainties and time-series consistency

The activity data uncertainty was estimated to be 5%; the emission factor uncertainty for NOx and SOx was estimated to be 20% (rating A. cf. chapter 1.7), 200% for NMVOC (rating D) and 125% for PM2.5 (rating C).

4.2.3. Source-specific QA/QC and verification

Quality check of these data is made by the advisor for emission data, within the division for analysis and reporting before they are used in the national inventory.

4.2.4. Source-specific recalculations

Recalculations were done due to due to final consumption data for 2022.

4.2.5. Source-specific planned improvements

Calculation of the national emission factors for power production plants will improve the quality of data in this key category. These planned improvements will be part of the activity for improving of national air emission inventory in IPA II air quality project that is planned to start in the end of this year.

4.3. Petroleum refining – NFR 1.A.1.b

This chapter presents the entire consumption of fuels in the oil industry. Main representative of this sector was only one company "OKTA AD – Skopje". In 1982 with the commissioning of the processing plants OKTA AD – Skopje becomes the only crude oil refinery in the country. In January 2013 production in OKTA ended, after which the company entered a transformation process from an inflexible and non-efficient heavy industry into a fast-growing client-oriented logistics services trade company. OKTA has developed a retail network of 25 petrol stations across the country, where it supplies high quality products and services to the end consumers.

4.3.1. Methodological issues

The Tier 1 approach for process emissions from combustion uses the general equation:

 $E_{\text{pollutant}} = AR_{\text{fuel consumption}} \times EF_{\text{pollutant}}$

E_{pollutant} annual emission of pollutant

EF_{pollutant} emission factor of pollutant

AR_{fuel consumption} activity rate by fuel consumption

This equation is applied at the national level. Using annual national total fuel use (disaggregated by fuel type (refinery gas and heavy fuel oil).

Activity data

Data on the consumption of fuels in this sector for the period 2000-2014 have been collected by the operator itself. No production was carried out from 2015 onwards. The company became customer-oriented, logistics and trading company, providing uninterrupted and reliable supply of fuel in the country. Request for providing data for the period 1990-1999 has been sent to the company, but these data have not been reported.

Data for 1990-1999 were calculated using the surrogate method. The estimates were related to the two trends in crude oil consumption by the refinery.

Table 36 Activity data for source category 1.A.1.b- Petroleum refining by type of fuel

Year	Refinery gas (TJ)	Residual fuel oil (TJ)
1990	1711	1680
1991	1356	1331
1992	797	782
1993	1432	1406
1994	201	198
1995	168	165
1996	980	961
1997	534	524
1998	1062	1042
1999	1077	1057
2000	1467	1071
2001	1425	1109
2002	912	870
2003	1103	1140
2004	1174	1181
2005	1373	1035
2006	1522	1002
2007	1551	1228
2008	1483	1304
2009	1368	1339
2010	1294	1921
2011	723	1815
2012	236	990
2013	68	384
2014	NO	107
2015	NO	NO
2016	NO	NO
2017	NO	NO
2018	NO	NO
2019	NO	NO
2020	NO	NO
2021	NO	NO
2022	NO	NO

Emission factors

The emission factors for refinery gas have been taken from GB 2023. Table 4-2, Tier 1 emission factors for source category 1.A.1.b, Refinery gas and emission factors for heavy fuel oil from GB 2023. Table 4-4 Tier 2 emission factors for source category 1.A.1.b, process furnaces using residual oil.

Table 37 Emission factors for source category 1.A.1.b- Petroleum refining

Pollutant	Unit	Refinery gas	Heavy fuel oil
NO_X	g/GJ	63	142
NMVOC	g/GJ	2.58	2.3
SO ₂	g/GJ	0.281	485
PM2.5	g/GJ	0.89	9
PM10	g/GJ	0.89	15
TSP	g/GJ	0.89	20
СО	g/GJ	12.2	6
Pb	mg/GJ	1.61	4.6
Cd	mg/GJ	2.19	1.2
Hg	mg/GJ	0.372	0.3
As	mg/GJ	0.352	3.98
Cr	mg/GJ	6.69	14.8
Cu	mg/GJ	3.29	11.9
Ni	mg/GJ	7.37	773
Se	mg/GJ	1.56	2.1
Zn	mg/GJ	17	49.3
"PCDD/ PCDF (dioxins/furans)"	ng I-TEQ/GJ	-	2.5
benzo(a) pyren	μg/GJ	0.669	
benzo(b) fluoranthene	μg/GJ	1.14	3.7
benzo(k) fluoranthene	μg/GJ	0.631	-
Indeno (1.2.3-cd) pyren	μg/GJ	0.631	-

4.3.2. Source-specific uncertainties and time-series consistency

The activity data uncertainty was estimated to be 5%; the emission factor uncertainty for NOx and SOx was estimated to be 20% (rating A. cf. chapter 1.7), 200% for NMVOC (rating D) and 40% for PM2.5 (rating B).

4.3.3. Source-specific QA/QC and verification

No specific QA/QC and data verification was performed, considering that no production process is occurring in the last few years.

4.3.4. Source-specific recalculations including changes made in response to the review process

No recalculations were made for this reporting period.

4.3.5. Source-specific planned improvements including those in response to the review process

No planned improvements in this category.

4.4. Manufacturing industries and construction—NFR 1.A.2

This category includes emissions from manufacturing industries. Several industrial branches are contributing to the category, each consisting of either a single or few industrial plants with rather small capacities. Many plants have phases of non-operation or high fluctuation in their production, as a repercussion of the economic changes since the early 1990s.

For all other categories, the Tier1 methodology has been selected by using default emission factors from the GB 2019.

4.4.1. Methodological issues

The Tier 1 approach for process emissions from industrial combustion installations uses the general equation:

$$E_{pollutants} = \sum AR_{fuel consumption} \times EF_{fuel.pollutnat}$$

E_{Pollutant} = emissions of pollutant (kg).

AR_{fuel consumption} = fuel used in the industrial combustion (TJ) for each fuel.

EF_{fuel.pollutant} = an average emission factor (EF) for each pollutant for each unit of fuel type used (kg/TJ).

Activity data – stationary combustion

Complete energy statistics is only available for the years 1991, 1993, 1995, 1996, 1998-2014. The missing years 1990, 1992, 1994 and 1997 have been linearly interpolated or gap-filled by means of production statistics.

The activity data for the following categories are presented in the Tables 58-63:

- 1.A.2.a Iron and steel
- 1.A.2.b Non-ferrous metals
- 1.A.2.c Chemicals
- 1.A.2.d Pulp. paper and print
- 1.A.2.e Food processing. beverages and tobacco
- 1.A.2.f —Non-metallic minerals is IE
- 1.A.2.g.vii Other

The activity data from the NFR category 1.A.2.gvii - Mobile Combustion in manufacturing industries and construction: for diesel fuel are presented in Table 38.

Table 38 Activity data for source category 1.A.2.a – Stationary combustion in manufacturing industries and construction: Iron and steel

Year	Biomass [TJ]	Natural gas [TJ]	Lignite [TJ]	Heavy Fuels [TJ]
1990	NA	NA	1396	3104
1991	NA	NA	2133	1184
1992	NA	NA	2451	1611

Year	Biomass [TJ]	Natural gas [TJ]	Lignite [TJ]	Heavy Fuels [TJ]
1993	NA	NA	1964	1291
1994	NA	NA	960	631
1995	NA	NA	2100	656
1996	NA	NA	NA	34
1997	NA	NA	272	179
1998	0.30	NA	5166	1793
1999	0.53	NA	3443	1414
2000	NA	27	2285	1699
2001	0.08	816	1912	780
2002	NA	960	1378	1076
2003	2.60	1119	2882	1196
2004	2.22	1226	3300	1041
2005	82.75	1413	5299	2029
2006	69.59	1456	6308	2793
2007	9.13	1465	7373	2571
2008	9.13	1201	5931	2969
2009	0.98	1141	3761	2571
2010	52.51	1126	5842	3224
2011	3.42	754	5415	2002
2012	4.00	605	6377	3000
2013	4.00	610	5220	3366
2014	3.42	754	5410	2002
2015	4.01	658	4368	1399
2016	2.41	864	4521	1142
2017	1.51	1025	2522	806
2018	101.11	994	3071	926
2019	95.70	912	4800	998
2020	503.08	845	3712	1157
2021	337.77	946	3963	986
2022	257.966	988	2198	463

Table 39 Activity data for source category 1.A.2.b - Stationary combustion in manufacturing industries and construction: Iron and steel

Year	Biomass [TJ]	Natural gas [TJ]	Lignite [TJ]	Heavy Fuels [TJ]
1990	NA	NA	2298	631
1991	NA	NA	1827	278
1992	NA	NA	1830	591
1993	NA	NA	1834	905
1994	NA	NA	1686	862

Year	Biomass [TJ]	Natural gas [TJ]	Lignite [TJ]	Heavy Fuels [TJ]
1995	NA	NA	1537	819
1996	NA	NA	NA	26
1997	NA	NA	920	82
1998	NA	NA	1839	139
1999	NA	NA	1754	700
2000	NA	NA	2046	771
2001	NA	NA	1919	374
2002	NA	NA	1246	615
2003	NA	NA	596	9
2004	NA	NA	NA	13
2005	NA	NA	NA	22
2006	NA	NA	NA	32
2007	NA	NA	NA	42
2008	NA	NA	NA	266
2009	NA	NA	NA	26
2010	NA	NA	NA	34
2011	NA	NA	NA	70
2012	NA	NA	NA	41
2013	NA	NA	NA	42
2014	NA	NA	NA	3
2015	NA	NA	NA	42
2016	NA	NA	NA	53
2017	NA	NA	NA	55
2018	NA	NA	NA	54
2019	NA	NA	NA	48
2020	NA	NA	NA	57
2021	0.187	NA	NA	71
2022	0.119	NA	NA	59

Table 40 Activity data for source category 1.A.2.c - Stationary combustion in manufacturing industries and construction: Chemicals

Year	Biomass [TJ]	Natural gas [TJ]	Lignite [TJ]	Heavy Fuels [TJ]
1990	NA	NA	NA	169
1991	NA	NA	NA	166
1992	NA	NA	0.42527	613
1993	NA	NA	0.85054	1060
1994	NA	NA	0.746996	1136
1995	NA	NA	0.643452	1213
1996	NA	NA	2.540328	33

Year	Biomass [TJ]	Natural gas [TJ]	Lignite [TJ]	Heavy Fuels [TJ]
1997	NA	NA	2.256664	89
1998	0.84	NA	1.973	144
1999	NA	NA	NA	40
2000	NA	NA	NA	NA
2001	NA	37.518	NA	0.0838
2002	NA	40.373	NA	1.59
2003	NA	32.715	NA	0.712
2004	NA	25.964	NA	5.99
2005	NA	117.684	NA	187
2006	NA	68.480	NA	166
2007	NA	62.045	NA	158
2008	NA	57.061	NA	154
2009	NA	37.596	NA	131
2010	NA	61.877	NA	89
2011	NA	52.170	NA	100
2012	NA	38.770	NA	75
2013	0.4165	36.942	NA	72
2014	NA	35.903	NA	65
2015	NA	36.439	NA	87
2016	NA	38.813	NA	74
2017	0.03	41.272	NA	83
2018	0.03	39.053	NA	75
2019	0,57	72.027	NA	83
2020	0,56	72.027	NA	41
2021	0,19	102.217	NA	23
2022	0.79	80.241	NA	20

Table 41 Activity data for source category 1.A.2.d - Stationary combustion in manufacturing industries and construction: Pulp. paper and print

Year	Biomass [TJ]	Natural gas [TJ]	Lignite [TJ]	Heavy Fuels [TJ]
1990	NA	NA	337.1813	12.89
1991	NA	NA	337.18	16.88
1992	NA	NA	0.44	12.40
1993	NA	NA	0.22	7.92
1994	NA	NA	NA	7.76
1995	NA	NA	NA	7.60
1996	NA	NA	NA	196.99
1997	NA	NA	56.11	169.95
1998	1.90	NA	28.78	142.91

Year	Biomass [TJ]	Natural gas [TJ]	Lignite [TJ]	Heavy Fuels [TJ]
1999	0.53	NA	1.45	2.86
2000	0.50	NA	NA	0.38
2001	0.84	NA	NA	0.29
2002	0.67	NA	NA	1.93
2003	0.21	NA	NA	1.26
2004	1.00	NA	NA	1.13
2005	1.71	74.54	0.78	52.94
2006	1.88	78.19	0.65	55.17
2007	1.71	75.25	0.87	56.71
2008	1.72	76.73	2.76	129.93
2009	1.43	58.56	0.62	62.99
2010	1.57	92.12	0.32	38.51
2011	0.91	33.83	0.19	27.53
2012	0.37	23.79	0.27	17.27
2013	0.32	15.06	0.25	16.01
2014	0.20	15.04	0.96	17.75
2015	0.18	15.04	0.23	26.37
2016	2.02	14.02	0.21	18.59
2017	2.85	15.94	0.25	22.64
2018	2.74	16.24	NA	18.00
2019	3.30	19.32	NA	20.45
2020	3.42	22.384	NA	20.70
2021	4,63	23.468	NA	22,60
2022	5.05	19.727	NA	18.46

Table 42 Activity data for source category 1.A.2.e - Stationary combustion in manufacturing industries and construction: Food processing, beverages, and tobacco

Year	Biomass [TJ]	Natural gas [TJ]	Lignite [TJ]	Heavy Fuels [TJ]
1990	NA	NA	172	1611
1991	NA	NA	34	223
1992	NA	NA	32	414
1993	NA	NA	30	605
1994	NA	NA	22	589
1995	NA	NA	14	572
1996	NA	NA	3	137
1997	NA	NA	17	547
1998	15.54	NA	31	956
1999	18.41	NA	31	115
2000	13.19	NA	28	1614

Year	Biomass [TJ]	Natural gas [TJ]	Lignite [TJ]	Heavy Fuels [TJ]
2001	12.31	34	13	155
2002	9.67	59	18	172
2003	4.19	59	22	202
2004	5.86	51	16	155
2005	136.53	257.30	19.93	1057
2006	8.77	261.38	6.04	1002
2007	2.18	243.90	10.32	920
2008	7.38	246.31	8.76	891
2009	2.05	211.11	7.00	895
2010	9.33	238.05	9.24	862
2011	5.92	237.68	7.52	824
2012	74.28	218.77	6.78	812
2013	138.16	220.22	6.85	681
2014	188.88	204.67	4.42	660
2015	182.19	215.39	NA	701
2016	152.72	234.03	NA	687
2017	184.95	240.53	NA	666
2018	167.95	240.62	NA	345
2019	162.61	233.08	0.46	683
2020	137.88	247.68	NA	689
2021	161.04	280.78	NA	684
2022	151.07	178.73	NA	685

Table 43 Activity data for category source category

Year	Biomass [TJ]	Natural gas [TJ]	Lignite [TJ]	Heavy Fuels [TJ]	Clinker [tones]
1990	67	NA	111	2666	491 902
1991	67	NA	111	2727	465 375
1992	67	NA	111	2606	396 496
1993	67	NA	110	2484	413 444
1994	67	NA	123	2117	375 914
1995	67	NA	135	1749	365 121
1996	66	NA	32	6040	396 015
1997	67	NA	593	2495	475 252
1998	66	NA	668	2991	346 867
1999	69	153	517	2000	427 080
2000	67	263	634	2540	614 162
2001	35	204	649	2744	716 963
2002	30	266	687	2922	739 492

Year	Biomass [TJ]	Natural gas [TJ]	Lignite [TJ]	Heavy Fuels [TJ]	Clinker [tones]
2003	38	29	1084	2731	602 569
2004	29	NA	1706	1349	643 258
2005	2068	86	332	1974	694 922
2006	179	86	263	3073	801 302
2007	124	88	265	4603	882 834
2008	186	86	213	4359	843 765
2009	126	71	170	2980	478 404
2010	100	128	134	3184	588 978
2011	104	244	104	3520	687 986
2012	113	135	113	3441	645 482
2013	84	129	141	3335	577 845
2014	113	135	113	3441	518 198
2015	52	145	939	2345	553 232
2016	61	173	2662	1027	739 807
2017	63	213	2632	1017	735 625
2018	63	235	2548	1234	748 287
2019	62	254	2327	1668	730 700
2020	53	291	301	3256	770 559
2021	52	292	1058	2979	803 735
2022	102	219	39	3725	673 837

4.4.2. 1.A.2. gviii - Stationary combustion in manufacturing industries and construction: Other

<u>Activity data – mobile combustion</u>

Activity data for category 1.A.2.gvii for diesel fuel is presented in Table 42. The activity data for the period 1990-2002 were calculated using surrogate data (off-road vehicles in industry). Data for 2005-2018 have been revised and taken from MAKSTAT database, during previous submission.

Table 44 Activity data for source category 1.A.2.gvii - Mobile Combustion in manufacturing industries and construction: for diesel fuel

Year	Heavy Fuels [TJ]	Year	Heavy Fuels [TJ]
1990	4879	2006	459
1991	3520	2007	528
1992	4707	2008	558
1993	4925	2009	789
1994	2074	2010	1020
1995	2408	2011	1378
1996	2074	2012	1737
1997	1796	2013	2300
1998	1624	2014	1154

Year	Heavy Fuels [TJ]	Year	Heavy Fuels [TJ]
1999	1316	2015	1190
2000	1050	2016	1207
2001	1156	2017	1104
2002	680	2018	1097
2003	549	2019	1056
2004	507	2020	1135
2005	429	2021	1173
		2022	1176

Emission factors – stationary combustion

Tier 1 emission factors have been used for calculation of emissions in separate categories. Emission factors for different type of fuels are presented in Tables 45-50.

Table 45 Emission factors for source category 1.A.2 - Stationary combustion in manufacturing industries and construction for biomass

Pollutant	Value	Unit	References
NOx	91	g/GJ	GB 2023 Table 3-5 emission factor for source category, 1.A.2. page 17
NMVOC	300	g/GJ	GB 2023 Table 3-5 emission factor for source category, 1.A.2. page 17
SOx	11	g/GJ	GB 2023 Table 3-5 emission factor for source category, 1.A.2. page 17
NH3	1.2	g/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 18
PM2.5	140	g/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 18
PM10	143	g/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 18
ВС	28	% of PM2.5	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 18
TSP	150	g/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 18
СО	570	g/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 18
Pb	27	mg/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 18
Cd	13	mg/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 18
Hg	0.56	mg/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 18
As	0.19	mg/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 18
Cr	23	mg/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 18
Cu	6	mg/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 18
Ni	2	mg/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 18
Se	0.5	mg/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 18
Zn	512	mg/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 18
PCDD/PCDF	100	ng I-Teq/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 18
benzo(a) pyren	10	mg/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 18
benzo(b) fluoranthene	16	mg/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 18
benzo(k) fluoranthene	5	mg/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 18
Indeno (1.2.3-cd) pyren	4	mg/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 18
НСВ	5	μg/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 18

Pollutant	Value	Unit	References
PCBs	0.06	μg/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 18

Table 46 Emission factors for source category 1.A.2-Stationary combustion in manufacturing industries and construction for gaseous fuel

Pollutant	Value	Unit	References
NOx	74	g/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 16
NMVOC	23	g/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 16
SOx	0.67	g/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 16
PM2.5	0.78	g/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 16
PM10	0.78	g/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 16
TSP	0.78	g/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 16
ВС	4	% PM2.5	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 16
со	29	g/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 16
Pb	0.011	mg/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 16
Cd	0.0009	mg/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 16
Hg	0.54	mg/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 16
As	0.1	mg/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 16
Cr	0.013	mg/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 16
Cu	0.0026	mg/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 16
Ni	0.013	mg/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 16
Se	0.058	mg/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 16
Zn	0.73	mg/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 16
PCDD/PCDF	0.52	ng I- Teq/GJ	GB2023 Table 3-3 emission factor for source category 1.A.2. page 16
benzo(a) pyren	0.72	mg/GJ	GB2023 Table 3-3 emission factor for source category 1.A.2. page 16
benzo(b) fluoranthen	2.9	mg/GJ	GB2023 Table 3-3 emission factor for source category 1.A.2. page 16
benzo(k) fluoranthene	1.1	mg/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 16
Indeno (1.2.3-cd) pyren	1.08	mg/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 16

Table 47 Emission factors for source category 1.A.2 - Stationary combustion in manufacturing industries and construction for solid fuel

Pollutant	Value	Unit	References
NOx	173	g/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 15
NMVOC	88.8	g/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 15
SOx	900	g/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 15
PM2.5	108	g/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 15
PM10	117	g/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 15
TSP	124	g/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 15
ВС	6.4	% of PM2.5	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 15
со	931	g/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 15
Pb	134	mg/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 15
Cd	1.8	mg/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 15
Hg	7.9	mg/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 15
As	4	mg/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 15
Cr	13.5	mg/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 15
Cu	17.5	mg/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 15
Ni	13	mg/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 15
Se	1.8	mg/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 15
Zn	200	mg/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 15
PCDD/PCDF	203	ng I-Teq/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 15
benzo(a) pyren	45.5	mg/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 15
benzo(b) fluoranthene	58.9	mg/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 15
benzo(k) fluoranthene	23.7	mg/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 15
Indeno (1.2.3-cd) pyren	18.5	mg/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 15
НСВ	0.62	μg/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 15
PCBs	170	μg/GJ	GB 2023 Table 3-3 emission factor for source category 1.A.2. page 15

Table 48 Emission factors for source category 1.A.2 - Stationary combustion in manufacturing industries and construction for liquid fuel

Value	Unit	References			
513	g/GJ	GB 2023 Table 3-4 emission factor for source category 1.A.2. page 17			
25	g/GJ	GB 2023 Table 3-4 emission factor for source category 1.A.2. page 17			
47	g/GJ	GB 2023 Table 3-4 emission factor for source category 1.A.2. page 17			
20	g/GJ	GB 2023 Table 3-4 emission factor for source category 1.A.2. page 17			
20	g/GJ	GB 2023 Table 3-4 emission factor for source category 1.A.2. page 17			
20	g/GJ	GB 2023 Table 3-4 emission factor for source category 1.A.2. page 17			
56	% of PM2.5	GB 2023 Table 3-4 emission factor for source category 1.A.2. page 17			
	513 25 47 20 20 20	513 g/GJ 25 g/GJ 47 g/GJ 20 g/GJ 20 g/GJ 20 g/GJ 20 g/GJ % of			

Pollutant	Value	Unit	References	
со	66	g/GJ	GB 2023 Table 3-4 emission factor for source category 1.A.2. page 1	
Pb	0.08	mg/GJ	GB 2023 Table 3-4 emission factor for source category 1.A.2. page 17	
Cd	0.006	mg/GJ	GB 2023 Table 3-4 emission factor for source category 1.A.2. page 17	
Hg	0.12	mg/GJ	GB 2023 Table 3-4 emission factor for source category 1.A.2. page 17	
As	0.03	mg/GJ	GB 2023 Table 3-4 emission factor for source category 1.A.2. page 17	
Cr	0.2	mg/GJ	GB 2023 Table 3-4 emission factor for source category 1.A.2. page 17	
Cu	0.22	mg/GJ	GB 2023 Table 3-4 emission factor for source category 1.A.2. page 17	
Ni	0.008	mg/GJ	GB 2023 Table 3-4 emission factor for source category 1.A.2. page 17	
Se	0.11	mg/GJ	GB 2023 Table 3-4 emission factor for source category 1.A.2. page 17	
Zn	29	mg/GJ	GB 2023 Table 3-4 emission factor for source category 1.A.2. page 17	
PCDD/PCDF	1.4	ng I- Teq/GJ	GB 2023 Table 3-4 emission factor for source category 1.A.2. page 17	
benzo(a) pyren	1.9	mg/GJ	GB 2023 Table 3-4 emission factor for source category 1.A.2. page 17	
benzo(b) fluoranthene	15	mg/GJ	GB 2023 Table 3-4 emission factor for source category 1.A.2. page 17	
benzo(k) fluoranthene	1.7	mg/GJ	GB 2023 Table 3-4 emission factor for source category 1.A.2. page 17	
Indeno (1.2.3-cd) pyren	1.5	mg/GJ	GB 2023 Table 3-4 emission factor for source category 1.A.2. page 17	

The emission factors for clinker production are presented in Table 47.

Table 49 Emission factors for category 1.A.2 - Stationary combustion in manufacturing industries and construction: Other for clinker

Pollutant	Value	Unit	References
NOx	1241	g/t clinker	GB 2023 Table 3-24 emission factor for source category 1.A.2.f, page 32
NMVOC	18	g/t clinker	GB 2023 Table 3-24 emission factor for source category 1.A.2.f, page 32
SOx	374	g/t clinker	GB 2023 Table 3-24 emission factor for source category 1.A.2.f, page 32
со	1455	g/t clinker	GB 2023 Table 3-24 emission factor for source category 1.A.2.f, page 32
Pb	0.098	g/t clinker	GB 2023 Table 3-24 emission factor for source category 1.A.2.f, page 32
Cd	0.008	g/t clinker	GB 2023 Table 3-24 emission factor for source category 1.A.2.f, page 32
Hg	0.049	g/t clinker	GB 2023 Table 3-24 emission factor for source category 1.A.2.f, page 32
As	0.0265	g/t clinker	GB 2023 Table 3-24 emission factor for source category 1.A.2.f, page 32
Cr	0.041	g/t clinker	GB 2023 Table 3-24 emission factor for source category 1.A.2.f,page 32
Cu	0.0647	g/t clinker	GB 2023 Table 3-24 emission factor for source category 1.A.2.f, page 32
Ni	0.049	g/t clinker	GB 2023 Table 3-24 emission factor for source category 1.A.2.f, page 32
Se	0.0253	g/t clinker	GB 2023 Table 3-24 emission factor for source category 1.A.2.f, page 32
Zn	0.424	g/tclinker	GB 2023 Table 3-24 emission factor for source category 1.A.2.f, page 32
РСВ	103	μg/t clinker	GB 2023 Table 3-24 emission factor for source category 1.A.2.f, page 32
PCDD/PCDF	4.1	ng I-TEQ/t clinker	GB 2023 Table 3-24 emission factor for source category 1.A.2.f, page 32
benzo(a) pyren	0.00006 5	g/t clinker	GB 2023 Table 3-24 emission factor for source category 1.A.2.f, page 32
benzo(b) fluoranthen	0.00028	g/t clinker	GB 2023 Table 3-24 emission factor for source category 1.A.2.f, page 32

Pol	lutant	Value	Unit	References
benzo(k)	fluoranthen	0.00007 7	g/t clinker	GB 2023 Table 3-24 emission factor for source category 1.A.2.f, page 32
Indeno pyren	(1.2.3-cd)	0.00004 3	g/tclinker	GB 2023 Table 3-24 emission factor for source category 1.A.2.f, page 32
НСВ		4.6	μg/t clinker	GB 2023 Table 3-24 emission factor for source category 1.A.2.f, page 32

Emission factors – mobile combustion

Concerning the source category 1.A.2.gvii, the emission factors for diesel fuels are presented in table 50.

Table 50 Emission factors for source category 1.A.2.gvii - Mobile Combustion in manufacturing industries and construction: for diesel fuel

Pollutant	Value	Unit	References
NOx	32 629	g/ton	GB 2023 Table 3-1 Tier 1 emission factors for off-road machinery
NMVOC	3777	g/tone	GB 2023 Table 3-1 Tier 1 emission factors for off-road machinery
NH₃	8	g/ton	GB 2023 Table 3-1 Tier 1 emission factors for off-road machinery
PM2.5	2104	g/tone	GB 2023 Table 3-1 Tier 1 emission factors for off-road machinery
PM10	2104	g/ton	GB 2023 Table 3-1 Tier 1 emission factors for off-road machinery
ВС	1306	g/ton	GB 2023 Table 3-1 Tier 1 emission factors for off-road machinery
TSP	2104	g/ton	GB 2023 Table 3-1 Tier 1 emission factors for off-road machinery
со	10 774	g/ton	GB 2023 Table 3-1 Tier 1 emission factors for off-road machinery
Cd	0.01	mg/kg	GB 2023 Table 3-1 Tier 1 emission factors for off-road machinery
Cr	0.05	mg/kg	GB 2023 Table 3-1 Tier 1 emission factors for off-road machinery
Cu	1.7	mg/kg	GB 2023 Table 3-1 Tier 1 emission factors for off-road machinery
Ni	0.07	mg/kg	GB 2023 Table 3-1 Tier 1 emission factors for off-road machinery
Se	0.01	mg/kg	GB 2023 Table 3-1 Tier 1 emission factors for off-road machinery
Zn	1	mg/kg	GB 2023 Table 3-1 Tier 1 emission factors for off-road machinery
benzo(a) pyrene	30	μg/kg	GB 2023 Table 3-1 Tier 1 emission factors for off-road machinery
benzo(b) fluoranthene	50	μg/kg	GB 2023 Table 3-1 Tier 1 emission factors for off-road machinery

With regards to SOx calculation for emissions coming from diesel is done using the sulfur content presented in Table 70.

4.4.3. Source-specific uncertainties and time-series consistency

The activity data uncertainty was estimated to be 10 %. For the categories 1.A.2.a - 1.A.2.e as well as for 1.A.2.gviii, the emission factor uncertainty for SOx was estimated to be 20% (rating A. cf. chapter 1.7). For NOx, including category 1.A.2.gvii was estimated to be 40% (rating B. cf. chapter 1.7). For NMVOC for the categories 1.A.2.a - 1.A.2.e, the EF uncertainty is estimated to be 200% (rating D. cf. chapter 1.7) and for the category 1.A.2.gvii. it was estimated to be 40% (rating B. cf. chapter 1.7). For the categories 1.A.2.a - 1.A.2.e for PM2.5, the EF is estimated to be 40% (rating B. cf. chapter 1.7), and for 1.A.2.gvii and 1.A.2.gviii is estimated to be 125% (rating C cf. chapter 1.7).

4.4.4. Source-specific QA/QC and verification

Standard QA/QC procedures were carried out for this source category. i.e. activity data were checked for plausibility and time-series consistency; emission data were checked for completeness and for consistency between the calculation files, NFR tables and the IIR.

4.4.5. Source-specific recalculations including changes made in response to the review process

Recalculations for 2022 were performed, due to the use of final data (from the energy balance) for fuel consumption. Due to updated activity data in several categories 2021 emission data were corrected

4.4.6. Source-specific planned improvements including those in response to the review process

Higher tier methodology will be performed in future submissions as soon as activity data is made available, through estalisment od NEIS in 2025.

4.5. Transport

4.5.1. Road transport –NFR 1.A.3

This chapter covers the emissions from road transport. It provides the methodology, emission factors as well as relevant activity data necessary for calculation of the exhaust emissions for the following categories of road vehicles:

- passenger cars (NFR code 1.A.3.b.i)
- light commercial vehicles (1) (< 3.5 t) (NFR code 1.A.3.b.ii)
- heavy-duty vehicles (2) (> 3.5 t) and buses (NFR code 1.A.3.b.iii)
- mopeds and motorcycles (NFR code 1.A.3.b.iv)

Road transport inventory has improved significantly, due to the implemented change of methodology in upgrading to Tier 3 method of emission calculation applied for the period 2005-2022. Activity data acquisition for the period 1990-2004 remains the same including estimated emissions, calculated with the highest uncertainty, due to the lack of details for the vehicle fleet data.

4.5.1.1. Road transport – NFR 1.A.3.bi.bii.biii.biv

4.5.1.1.1. Methodology

The simplified Tier 1 methodology for emissions calculation from the road transport for the period 1990-2004 has been used: fuel quantity (expressed in heat units) is multiplied by the appropriate emission factor, which depends on the type of the fuel and type of technology of combustion in stationary sources and the type of mobile equipment and machinery, respectively.

The Tier 1 approach for exhaust emissions uses the following general equation:

$$E_i = \sum_{j} \left(\sum_{m} (FC_{j,m} \times EF_{i,j,m}) \right)$$

Where:

 E_i = emission of pollutant i [g].

FC_{j,m} = fuel consumption of vehicle category j using fuel m [kg].

EF_{i,i,m} = fuel consumption-specific emission factor of pollutant i for vehicle category j and fuel m [g/kg].

The emission data for the period 1990-2000 has been taken directly from NFR tables reported in 2013. There is no detail background data on the type of fuel consumption, or the EF used for this reporting period.

The emission factors are available for CO, NH₃, NMVOC, NOx, lead, benzo (a) pyrene and Particulate Matter (PM). Concerning particulate matter, the guidebook assumes that the amount of total suspended particles is equivalent to the PM10 and PM25. The Tier 2 emission factors are stated in units of grams per vehicle-kilometer and for each vehicle technology are given in the table 3.17 of the EEA Guidebook 2013.

COPERT 5 (version 5.5.1) methodology has been used for calculation of the national emissions from road transport for the period 2005-2022. The methodology is fully incorporated in the computer software program COPERT 5 (version 5.5.1) which facilitates its application. The actual calculations have been therefore performed by using this computer software.

The COPERT methodology is also part of the EMEP/EEA air pollutant emission inventory guidebook (formerly referred to as the EMEP/CORINAIR Guidebook). The Guidebook is prepared by the UNECE/EMEP Task Force on Emission Inventories and Projections (TFEIP) and published by the European Environment Agency.

The COPERT methodology is fully consistent with the Road Transport chapter of the Guidebook. The use of a software tool to calculate road transport emissions allows for a transparent and standardized, hence consistent, and comparable data collecting and emissions reporting procedure, in accordance with the requirements of international conventions and protocols and EU legislation.

To calculate emissions using the COPERT 5 software, at least the following input data is necessary: vehicle fleet data, mileage data per vehicle category and type of roads, speed data, fuel consumption and fuel characteristic, monthly air minimum and maximum temperatures, fuel vapor pressure etc.

COPERT 5 (version 5.5.1) program was used for emissions calculation of exhaust emissions and emissions from automobile tire and brake wear and road abrasion.

Exhaust emissions of NOx, SOx, NMVOC, NH3, PM2.5, PM10, TSP, Black carbon (BC), CO, Lead (Pb), Cadmium (Cd), Mercury (Hg), Arsenic (As), Chromium (Cr), Copper (Cu), Nickel (Ni), Selenium (Se), Zinc (Zn), dioxins/furans and four indicator PAHs (benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, indeno(1,2,3-cd)pyrene), PCB and HCB have been calculated using COPERT 5 (version 5.5.1).

Emissions of particulate matter (PM2.5, PM10, TSP, BC) from automobile tire and brake wear and road abrasion have been calculated by COPERT 5 (version 5.5.1) as well.

COPERT 5 (version 5.5.1) model also calculates emissions of heavy metals (Pb, Cd, As, Cu, Cr, Ni Se, Zn) from automobile tire and brake wear.

Vehicle fleet

The fleet composition for the years 2005–2022 was taken from the official database of registered motor vehicles in North Macedonia, provided by the Ministry of Interior Affairs. Since no available database exists on motor and vehicles for the period 1990–2004, Tier 1 method of emission calculation was used for that period.

Concerning the annual average mileage of a vehicle category, the data available from the national statistics are referred to the total annual mileage of a certain vehicle, without considering the different regimes of circulation (urban, interurban, highway).

Fuel consumption and mileage data

The fuel consumption and the consecutive energy consumption of the national vehicle fleet was taken from the official Energy statistic of the country/fuel consumption of the subsector road transportation. According to the national energy balance, the road transport sector mainly consumes diesel, petrol, LPG fuel, as well as small quantities of CNG.

The initial mileage data per subcategory was obtained by the EMISIA SA database for North Macedonia containing country specific activity data per vehicle class for the period 2000 -2014. This EMISIA SA database for the EU and EU accession countries has been prepared using latest official statistics available, relevant studies, and SIBYL data, as well as the road transport dataset and methodology of the TRACCS and FLEETS research projects. The quality, completeness, and consistency of TRACCS and FLEETS datasets, which have been extensively reviewed and cross-checked, together with the expertise of EMISIA on transport data, ensure that the compiled COPERT data are also of good quality.

Based on the mileage data for the period 2000 -2014, a linear interpolation of the mileage data has been done for the period 2015 - 2022. As a last step, the initial mileage data per category has been calibrated using the variables for the annual fuel consumption data and the specifics of the vehicles categories and classes. The detailed mileage matrix contains annual mileage per vehicle subcategory for new vehicles and for every vintage back in time, which determines the yearly mileage reduction percentages as a function of vehicle age. In a first step, the detailed mileage matrix is combined with corresponding fleet numbers to estimate intermediate total mileages for each year on a detailed fleet level. Next, each year's detailed (intermediate) mileage figures are scaled according to the difference between true and intermediate total mileage per vehicle subcategory.

The datasets of EMISIA SA also provided information of the mileage split between urban, rural and highway driving based on their surveys and monitoring data. This has been also crosschecked with the national statistical data to assure compliance and consistency with the present national circumstances and the national data.

Meteorology and climate data

Emissions and fuel consumption results for operationally hot engines are calculated for each year and for layer and road type. The procedure is to combine fuel consumption and emission factors (and deterioration factors for catalyst vehicles), number of vehicles, annual mileage levels and the relevant road-type shares.

Extra emissions of NOx, VOC, CH_4 , CO, PM, N2O, NH_3 and fuel consumption from cold start are simulated separately. For SO_2 and CO_2 , the extra emissions are derived from the cold start fuel consumption results.

Each trip is associated with a certain cold-start emission level and is assumed to take place under urban driving conditions. The number of trips is distributed evenly across the months. First, cold emission factors are calculated as the hot emission factor times the cold: hot emission ratio. Secondly, the extra emission factor during cold start is found by subtracting the hot emission factor from the cold emission factor. Finally, this extra factor is applied on the fraction of the total mileage driven with a cold engine (the factor) for all vehicles in the specific layer.

The cold/hot ratios depend on the average trip length and the monthly ambient temperature distribution. The meteorological data for North Macedonia as minimum and maximum monthly temperature data and the average monthly humidity for the period 2005 -2022 have been provided by the National Hydrometeorological Service of North Macedonia. The City of Skopje is taken as a reference city for this assessment and the meteorological data provided in the COPERT assessment are referring to the meteorological conditions in the city of Skopje.

Annual mileage (km/year) for each vehicle category for 2005-2018 has been taken from EMISIA database for North Macedonia. For other years the starting point is the same average yearly kilometres per vehicles class as in 2015, corrected to actual fuel consumption.

Sulfur dioxide emissions are calculated using emission factors offered by COPERT. Sulfur fuel content (ppm wt) is used as an input, according to the Decree on fuel quality:

Petrol Grade 1	10
Petrol Grade 2	10
Diesel Grade 1	10
Diesel Grade 2	10
LPG Grade 1	50
LPG Grade 2	50

Activity data

Fuel consumption data were taken from Statistical yearbook – chapter Energy balance 1990-2022 [22]. Data on number of vehicles were taken from Statistical yearbook for the period 1990-2002 [22] and publication Transport and other communication for the period 2003-2004 [26]. For the period 2005-2022 data on number of vehicles were taken from MOI database.

Table 51 Activity data for source category 1.A.3.b - Road transport for period 1990-2022

NFR	1A3bi	1A3bi	1A3bii	1A3biii	1A3biv
Year	Liquid fuels	Gas fuel	Liquid fuels	Liquid fuels	Liquid fuels
1990	7647	2064	1553	3054	101
1991	6331	1396.6	2148.1	4293.3	121
1992	7097	1565.6	2544.1	5084.8	1818
1993	7353.6	1622.2	2652.8	5302.1	198.9

NFR	1A3bi	1A3bi	1A3bii	1A3biii	1A3biv
Year	Liquid fuels	Gas fuel	Liquid fuels	Liquid fuels	Liquid fuels
1994	6674	1472.3	2300.1	4597.1	96.1
1995	7250.3	1599.4	2579.2	5154.9	152.6
1996	7202.5	1588.8	2556.6	5109.8	179
1997	7333.9	1617.8	2614.7	5225.9	227.7
1998	7320.6	1614.9	2649	5294.4	236.2
1999	7350.6	1621.5	2640.6	5277.5	232.2
2000	7597.3	1675.9	2739.8	5475.9	246.9
2001	6115.9	1395.2	2198.5	4466.2	50.5
2002	6599	1395.2	2410.2	4819	76.6
2003	6.188	1.395.2	2.260.1	4.518.8	71.8
2004	6324.3	1395.2	2005.2	3991.3	91.5
2005	6034.5	1249.3	2229.9	4460	100.6
2006	5685.8	1489.4	1868.6	4982.6	135.1
2007	6150.6	1987.7	2156.3	5763.2	152.8
2008	5943	1.953	1.656.9	4.390.4	339.3
2009	6477.3	1987.7	2971.0	5972.4	342.1
2010	7456.4	2634	3980	8045	92.5
2011	7272.1	1599.6	3464.3	6986	93.7
2012	6300.4	1543.1	3553.6	7178.4	83.3
2013	6847.1	1693	4168.3	8433.1	87.4
2014	10 298	726.0	2122.0	6990.0	51.6
2015	10 873	717.0	2826.0	7877.0	60.4
2016	11446	734.0	2288.0	11568	70.0
2017	11902	737.0	1994.0	11723	84.0
2018	12411	742.0	2077	11788	79.0
2019	12981	722.4	2170.5	11910	68.2
2020	10491	NA	3342.5	12856	13.3
2021	12215.7	NA	5293.3	13308.8	27.4
2022	12927.0	NA	2835.4	15227.2	45.0

Table 52 Activity data for source category 1.A.3.b Road transport for 2022

NFR code	Fuel	Fuel consumption [TJ]
	Gasoline	3969
1A3bi	Diesel	6988
	LPG	1970
4.4.21. ''	Gasoline	82
1A3bii	Diesel	2753
1A3biii	Gasoline	24

NFR code	Fuel	Fuel consumption [TJ]
	Diesel	14094
	CNG	78
1A3biv	Gasoline	45

Emission factors

Default emission factors for the basic pollutants, lead and particulates were taken from GB 2009 –Tier 1 emission factors, for the period 1990-2004.

Tier 3 approach used for the period 2005-2022 uses emission factors for calculating exhaust and non-exhaust emissions for NOx, SOx, NMVOC, NH3, PM2.5, PM10, TSP, BC, CO, Pb, Cd, Hg, As, Cr, Cu, Ni, Se, Zn, dioxins/furans and PAHs (benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, indeno(1,2,3-cd)pyrene), HCB, PCB as default emission factors offered by the COPERT 5 (version 5.5.1).

Sulfur dioxide emissions are estimated by using the sulfur content in different periods as presented in Table 70.

Table 53 Emission factor for source category 1.A.3.b - Road Transport used for calculation of emissions in the period 1990-2004 by use of Tier 1 methodology

NED code	Fuel	NOx	NMVOC	NH ₃	TSP	со	As
NFR code	Unit	g/kg fuel	g/kg fuel	g/kg fuel	g/kg fuel	g/kg fuel	/
	Gasoline	14.50	14.00	0.173	0.037	132.00	/
1A3bi	Diesel	11.00	1.10	0.018	1.70	4.70	/
	LPG	15.00	10.00	0.173	/	68.00	/
1 A 2 b ::	Gasoline	24.00	14.00	0.14	0.03	155.00	/
1A3bii	Diesel	15.00	1.75	0.014	2.80	11.00	/
1A3biii	Diesel	37.00	1.60	0.015	1.20	8.00	/
1A3biv	Gasoline	9.50	114.00	0.063	2.70	490.00	/

4.5.1.1.2. Source-specific uncertainties and time-series consistency

Tier 3 methodology has been used for calculation of the emissions for the period 2005-2022, while the calculation of the emissions for the previous years is done by use of Tier 1 method which presents a trend of inconsistency in this sector.

Acquired data for the fleet composition in Republic of North Macedonia is available for the years 2005-2022, and an external Consultant was engaged to calculate and improve the methodology of activity data and perform QA/QC analysis of the registered vehicle database. Previously the data was preliminary quality checked by introducing a tool for automatic and manual data validation. The 2022 vehicle database underwent a thorough quality check, involving a manual examination to identify and correct inconsistencies and errors. This process not only addressed the existing issues but also implemented a mechanism to apply these corrections to the entire vehicle fleet for each subsequent year. Going forward, the focus will be on checking only the newly registered vehicles in the upcoming years.

During the assessment and elaboration of the vehicle data and its translation into the COPERT model, few issues has been identified and underlined as possible gaps and limitations in the national vehicle fleet database.

The database has significant number of unreliable entries. More specifically, significant number of heavy-duty vehicles/tracks are recorded as vehicles operating on petrol, which is not possible for vehicles of that certain type, since the petrol engines are not technologically appropriate for heavy duty vehicles. The database contains significant amount of "too heavy" vehicles and errors in the payload or vehicle weight entries. Furthermore, a considerable number of motorcycles were previously misreported as diesel-driven, and this error was underestimated in past reports. This discrepancy was corrected in the 2022 report, resulting in a notable increase in the count of motorcycles running on petrol and a corresponding shift in emissions for this year. Manual revision and correction of the inconsistent and inappropriate entries was done.

The estimation of the mileage may entail some degree of uncertainty. Nevertheless, the magnitude of the mileage amount estimated for each category of vehicles on national level is comparable with information retrieved in other countries in Europe.

The activity data uncertainty was estimated to be 10 % (rating C. cf. chapter 1.7); the emission factor uncertainty for NOx. NMVOC and PM2.5 was estimated to be 20 % (rating A. cf. chapter 1.7), for SO_2 and was estimated to be 40% (rating B) and NH_3 for (125% rating C).

4.5.1.1.3. Source-specific QA/QC and verification

The activity data has been a subject to QA/QC procedures. The consumption of fuel each year has been cross checked with the previous year and compared. The calculation of the emissions using Tier 3 approach was cross checked by using reverse process to calculate the emissions from the total fuel quantities, taken from the Energy Balance of the Republic of North Macedonia as part of Statistical yearbook. This amount has been distributed to the relevant SNAP subgroups in percentage, depending (as stated above) on the number and type of vehicles in the Republic of North Macedonia.

EF from GB 2016 were inserted in the excel calculation sheet and rechecked. Calculated emissions per NFR category by use of vehicles numbers and mileage were crosschecked with fuel consumption data

from the energy balance in road transport sector. There are differences between the energy balance fuel consumption and calculations done by bottom-up approach, but this is expected due to the fact that consumption from tourists that are passing through our country is not excluded and additionally there is some percentage of not registered cars especially in the rural environment.

4.5.1.1.4. Source-specific recalculations including changes made in response to the review process No recalculations were done in this category.

4.5.1.1.5. Source-specific planned improvements including those in response to the review process

The Ministry has obtained the VIN number of each vehicle entry in the vehicle database, that will allow the QA/QC procedure to be done once for the whole vehicle fleet and allow just a yearly QA/QC procedure for the newly registered vehicles each year. This will significantly improve the quality of the transport sector emission calculation. This task is to be revised each year and it is expected that it will improve the consistency of the database.

4.5.1.2. Gasoline evaporation (from vehicles) –NFR 1.A.3.b.v

This chapter provides the methodology, emission factors and relevant activity data to enable evaporative emissions of NMVOCs from gasoline vehicles (NFR code 1.A.3.b.v) to be calculated. The term 'evaporative emissions', refers to the sum of all fuel related NMVOC emissions not deriving from fuel combustion.

Most evaporative emissions of VOCs emanate from the fuel systems (tanks, injection systems and fuel lines) of petrol vehicles. Evaporative emissions from diesel vehicles are considered negligible, due to the presence of heavier hydrocarbons and the relatively low vapor pressure of diesel fuel and can be neglected in the calculations.

4.5.1.2.1. Methodological issues

Tier 1 methodology is used to calculate evaporative emissions for the period 1990-2004

The Tier 1 approach for calculating evaporative emissions uses the general equation from EMEP/EEA Guidebook 2013:

$$E_{VOC} = \sum_{j} N_j \times EF_{VOC.j} \times 365$$

Where:

 \mathbf{E}_{VOC} = the emissions of VOC (g/year);

N_i=the number of vehicles in category j.

EF_{voc.j}= the emission factor of VOC for vehicle category j (g/vehicle/day).

j = the vehicle category (passenger cars, light-duty vehicles and two-wheel vehicles. i.e.[5])

Tier 3 method is used to calcululate evaporative emissions for the period 2005-2021, using Copert 5 model

Activity Data

The number of vehicles in category PCs and TWs are taken directly from the statistical yearbooks for the period 1990-2004 [22] and MOI database for the period 2005 - 2022.

Table 54 Activity data for source category 1.A.3.v - Gasoline evaporation for Tier 1 calculation

Year	Passenger cars (PCs)	Light-duty vehicles (LDVs)	Two-wheel vehicles (TWVs)
1990	196 282	4 500	1 523
1991	212 340	4 729	1 489
1992	238 032	5 601	2 238
1993	246 638	5 841	2 448
1994	223 845	5 065	1 183
1995	243 175	5 678	1 879
1996	241 572	5 629	2 203
1997	245 979	5 757	2 803
1998	245 532	5 832	2 907
1999	246 537	5 814	2 858
2000	254 811	6 032	3 040
2001	263 294	6 312	3 654
2002	261 609	5 872	2 379
2003	254 999	5 532	1 746
2004	195 915	4 340	1 203

Emission factors used for Tier 1 methodology

For the calculation of emissions for emission parameters from 1990-2004, the used emission factors were taken from the GB 2009, NMVOC emission factors for gasoline fueled road vehicles, when daily temperature range is around 10 to 25°C, were considered. This emission factor was chosen because calculated average annual temperature was 13.7°C, according to the automatic meteorological station under responsibility of HMA – Hydro Meteorological Administration.

These emission factors are presented in table below.

Table 55 Evaporative emissions emission factors source category 1.A.3.bv - Gasoline evaporation for gasoline fueled road vehicles — when daily temperature range is around 10 to 25 °C

Pollutant	Vehicle type	Value	Unit	References
NMVOC	Gasoline PCs	14.8	g/vehicle/day	GB 2009 1.A.3.b.v Gasoline evaporation. Table 3-2. pg. 9 evaporative emissions emission factors for gasoline fueled road vehicles — when daily temperature range is around 10 to 25 °C.
NMVOC	Gasoline LDVs	22.6	g/vehicle/day	GB 2009 1.A.3.b.v Gasoline evaporation. Table 3-2. pg. 9 evaporative emissions emission factors for gasoline fueled road vehicles — when daily temperature range is around 10 to 25 °C.
NMVOC	Two-wheel vehicles	3.0	g/vehicle/day	GB 2009 1.A.3.b.v Gasoline evaporation. Table 3-2. pg. 9 evaporative emissions emission factors for gasoline fueled road vehicles — when daily temperature range is around 10 to 25 °C.

4.5.1.2.2. Source-specific uncertainties and time-series consistency

No specific uncertainty calculations are performed in this category.

4.5.1.2.3. Source-specific QA/QC and verification

Standard QA/QC procedures were carried out for this source category, i.e. activity data were checked for plausibility and time-series consistency; emission data were checked for completeness and for consistency between the calculation files, NFR tables and the IIR. Linkage between excel sheet for vehicles numbers and calculation sheet for this category was implemented.

4.5.1.2.4. Source-specific recalculations including changes made in response to the review process No recalculations were carried out in this category.

4.5.1.2.5. Source-specific planned improvements including those in response to the review process No planned improvments in this category.

4.5.1.3. Road vehicle tire and brake wear NFR 1.A3.b.vi and road surface wear - NFR 1.A.3.b.vii

This chapter covers the emissions of particulate matter (PM) which are due to road vehicle tire and brake wear (NFR code 1.A.3.b.vi) and road surface wear (NFR code 1.A.3.b.vii). PM emissions from vehicle exhaust are not included. The focus is on primary particles — in other words, those particles emitted directly because of the wear of surfaces — and not those resulting from the re-suspension of previously deposited material.

4.5.1.3.1. Methodological issues

Tier 1 method of calculation road vehicle tire and brake wear was used for the period 1990-2004.

To calculate emissions of TSP, PM10 or PM2.5 from (i) brake and tire wear combined and (ii) road surface wear, an equation can be used. This equation can be used to estimate emissions for a defined spatial and temporal resolution by selecting appropriate values for the fleet size and the activity (mileage). Emission factors are given as a function of vehicle category alone. Total traffic generated emissions for each of the NFR codes can be estimated by summating the emissions from individual vehicle categories.

$$TE = \sum_{j} N_{j} \times M_{j} \times EF_{i,j}$$

where:

TE= total emissions of TSP. PM10 or PM2.5 for the defined time period and spatial boundary [g]

 N_i = number of vehicles in category j within the defined spatial boundary

M_i= average mileage driven per vehicle in category j during the defined time period [km]

EF_{i,j} = mass emission factor for pollutant i and vehicle category j [g/km]

The indices are:

i =TSP, PM10, PM2.5

j = vehicle category (two-wheel vehicle, passenger car, light-duty truck, heavy-duty vehicle).

Two-wheel vehicles correspond to mopeds and motorcycles. Passenger cars are small or larger family cars used mainly for the carriage of people. Light-duty trucks include vans for the carriage of people or goods. Heavy-duty vehicles correspond to trucks, urban buses, and coaches.

Tier 3 method was used for the period 2004-2022, by using COPERT 5 model.

Activity Data

The activity data on the number of vehicles for the category Passenger cars and Motorcycles have been taken from the publication "Transport and communication" for the period 2003-2004 [26], and from the chapter Transport from the Statistical yearbook for the period 1990-2002 [22], and for the period 2005-2022, data from the MOI database was used.

For the period 1990-2004, the number of Heavy-duty (HDV) vehicles has been calculated as the sum of the numbers of Buses + Goods vehicles + Road tractors. Information on the number of Light duty vehicles (LDV) is currently not available. In the previous years there was, however, a category called "commercial vehicles" in the Statistical yearbook for the period and later "freight cars" which represent LDVs. For the last available year 2002 the published shares were taken to calculate LDVs as a part of the total "goods vehicles". The category "goods vehicles" plus "road tractors" now correlates to the former "special vehicles". Yearly mileages per vehicle category were provided by the Mechanical Faculty of Skopje.

Table 56 Activity data for the source categories 1.A.3.bvi - Road vehicle tire and brake wear and 1.A.3.b.vii Road surface wear

Year	2W x Mileage [km]	PCs x Mileage [km]	LDTs x Mileage [km]	HDVs x Mileage [km]
1990	5 596 151	1 623 758 097	364 624 335	357 046 031
1991	5 473 324	1 756 600 415	383 221 612	379 976 496
1992	8 223 466	1 969 141 086	453 867 724	434 940 721
1993	8 996 382	2 040 332 747	473 265 390	466 679 239
1994	4 346 903	1 851 778 276	410 458 384	416 094 438
1995	6 905 315	2 011 681 586	460 129 592	474 896 809
1996	8 097 643	1 998 418 463	456 104 105	474 355 532
1997	10 302 550	2 034 879 739	466 462 083	479 719 096
1998	10 683 017	2 031 178 729	472 582 705	485 673 143
1999	10 503 269	2 039 495 446	471 076 090	496 449 478
2000	11 171 332	2 107 943 013	488 778 815	543 737 410
2001	13 430 164	2 178 121 470	511 472 201	599 046 084
2002	8 741 739	2 164 182 878	475 831 344	629 308 392
2003	6 417 000	2 109 498 000	448 265 000	654 650 000
2004	4 140 000	1 774 428 000	358 100 000	615 340 000

Emission factors

Tables 57 and 58 summarize the emission factors used for the calculation of particulate emissions for the period 1990-2004, for which Tier 1 method was applied. The emission factors for the period 2005-2022 are integrated in the COPERT 5 model.

Table 57 Emission factors for source category 1.A.3.b.vi - Road vehicle tire

Pollutant	Vehicle type	Value	Unit	References
TSP	Two-wheelers	0.0083	g km-1 vehicle-1	GB 2019 1.A.3.b.vi Road vehicle tire and brake wear. 1.A.3.b.vii Road surface wear Table 3-1 pg 14
PM10	Two-wheelers	0.0064	g km-1 vehicle-1	GB 2019 1.A.3.b.vi Road vehicle tire and brake wear. 1.A.3.b.vii Road surface wear Table 3-1 pg 14
PM2.5	Two-wheelers	0.0034	g km-1 vehicle-1	GB 2019 1.A.3.b.vi Road vehicle tire and brake wear. 1.A.3.b.vii Road surface wear Table 3-1 pg 14
TSP	Passenger cars	0.0182	g km-1 vehicle-1	GB 2019 1.A.3.b.vi Road vehicle tire and brake wear. 1.A.3.b.vii Road surface wear Table 3-1 pg 14
PM10	Passenger cars	0.0138	g km-1 vehicle-1	GB 2019 1.A.3.b.vi Road vehicle tire and brake wear. 1.A.3.b.vii Road surface wear Table 3-1 pg 14
PM2.5	Passenger cars	0.0074	g km-1 vehicle-1	GB 2019 1.A.3.b.vi Road vehicle tire and brake wear. 1.A.3.b.vii Road surface wear Table 3-1 pg 14
TSP	Light duty trucks	0.0286	g km-1 vehicle-1	GB 2019 1.A.3.b.vi Road vehicle tire and brake wear. 1.A.3.b.vii Road surface wear Table 3-1 pg 14
PM10	Light duty trucks	0.0216	g km-1 vehicle-1	GB 2019 1.A.3.b.vi Road vehicle tire and brake wear. 1.A.3.b.vii Road surface wear Table 3-1 pg 14
PM2.5	Light duty trucks	0.0177	g km-1 vehicle-1	GB 2019 1.A.3.b.vi Road vehicle tire and brake wear. 1.A.3.b.vii Road surface wear Table 3-1 pg 14
TSP	Heavy duty vehicles	0.0777	g km-1 vehicle-1	GB 2019 1.A.3.b.vi Road vehicle tire and brake wear. 1.A.3.b.vii Road surface wear Table 3-1 pg 14
PM10	Heavy duty vehicles	0.0590	g km-1 vehicle-1	GB 2019 1.A.3.b.vi Road vehicle tire and brake wear. 1.A.3.b.vii Road surface wear Table 3-1 pg 14
PM2.5	Heavy duty vehicles	0.0316	g km-1 vehicle-1	GB 2019 1.A.3.b.vi Road vehicle tire and brake wear. 1.A.3.b.vii Road surface wear Table 3-1 pg 14

Table 58 Emission factors for the source category 1.A.3.bvii Road surface wear

Pollutant	Vehicle type	Value	Unit	References
TSP	Two-wheelers 0.006		g km-1 vehicle-1	GB 2019 1.A.3.b.vi Road vehicle tire and brake wear. 1.A.3.b.vii Road surface wear Table 3-1 pg 14
PM10	Two-wheelers	0.003	g km-1 vehicle-1	GB 2019 1.A.3.b.vi Road vehicle tire and brake wear. 1.A.3.b.vii Road surface wear Table 3-1 pg 14
PM2.5	Two-wheelers	0.0016	g km-1 vehicle-1	GB 2019 1.A.3.b.vi Road vehicle tire and brake wear. 1.A.3.b.vii Road surface wear Table 3-1 pg 14
TSP	Passenger cars 0.02		g km-1 vehicle-1	GB 2019 1.A.3.b.vi Road vehicle tire and brake wear. 1.A.3.b.vii Road surface wear Table 3-1 pg 14
PM10	Passenger cars	0.0075	g km-1 vehicle-1	GB 2019 1.A.3.b.vi Road vehicle tire and brake wear. 1.A.3.b.vii Road surface wear Table 3-1 pg 14
PM2.5	Passenger cars 0.004		g km-1 vehicle-1	GB 2019 1.A.3.b.vi Road vehicle tire and brake wear. 1.A.3.b.vii Road surface wear Table 3-1 pg 14
TSP	Light duty trucks 0.015		g km-1 vehicle-1	GB 2019 1.A.3.b.vi Road vehicle tire and brake wear. 1.A.3.b.vii Road surface wear Table 3-1 pg 14
PM10	Light duty trucks 0.0075		g km-1 vehicle-1	GB 2019 1.A.3.b.vi Road vehicle tire and brake wear. 1.A.3.b.vii Road surface wear Table 3-1 pg 14
PM2.5	Light duty trucks	0.0041	g km-1 vehicle-1	GB 2019 1.A.3.b.vi Road vehicle tire and brake wear. 1.A.3.b.vii Road surface wear Table 3-1 pg 14

Pollutant	Vehicle ty	/pe	Value	Unit	References
TSP	Heavy vehicles	duty	0.076	g km-1 vehicle-1	GB 2019 1.A.3.b.vi Road vehicle tire and brake wear. 1.A.3.b.vii Road surface wear Table 3-1 pg 14
PM10	Heavy vehicles	duty	0.038	g km-1 vehicle-1	GB 2019 1.A.3.b.vi Road vehicle tire and brake wear. 1.A.3.b.vii Road surface wear Table 3-1 pg 14
PM2.5	Heavy vehicles	duty	0.0205	g km-1 vehicle-1	GB 2019 1.A.3.b.vi Road vehicle tire and brake wear. 1.A.3.b.vii Road surface wear Table 3-1 pg 14

4.5.1.3.2. Source-specific uncertainties and time-series consistency

No specific uncertainty calculations are performed in this category.

4.5.1.3.3. Source-specific QA/QC and verification

Standard QA/QC procedures were carried out for this source category i.e. activity data were checked for plausibility and time-series consistency; emission data were checked for completeness and for consistency between the calculation files, NFR tables and the IIR. Linkage between excel sheet for vehicles numbers and calculation sheet for this category was implemented.

4.5.1.3.4. Source-specific recalculations including changes made in response to the review process No recalculations were carried out in this category.

4.5.1.3.5. Source-specific planned improvements including those in response to the review process Since different methodology is used for period 1990-2004 and 2015-2022 there is need to use Tier 3 for whole time series.

4.5.2. Aviation

Methodological issues, activity data and emission factors can be found below, distinguished by domestic and international landing and take-off (LTO) and cruise. Planned improvements, QA/QC, Recalculations and Uncertainties for the whole sector 1.A.3.a, are shown at the end of this chapter.

4.5.2.1. International aviation LTO – NFR 1.A.3.ai(i)

4.5.2.1.1. Methodological issues

The approach is based on the number of flights which are available in the BC's transport statistics. The number of flights were divided into "international LTOs" (regular + charter) and "other operations". "Other operations" have a share of 9% of total LTOs in 2016 and it is assumed that private jets running internationally on kerosene operate these flights.

Activity Data

The Number of LTO was taken from the publication Transport and communications for the period 2005-2016[26]. For the previous years, surrogate method has been used. The estimates of the activity data were related to the passenger numbers. MEPP has sent official request to the TAV airport in Skopje and the civil aviation agency (CAA) of Republic of North Macedonia regarding jumps in 1999 and 2000 on LTO but did not receive answer.

Table 59 Activity data for source category 1.A.3.ai (i) - International aviation LTO civil (number of LTO)

Year	Number of LTO	Year	Number of LTO	Year	Number of LTO
1990	11 986	2002	12 767	2014	13 968
1991	11 297	2003	12 170	2015	15585
1992	10 539	2004	11 986	2016	16879
1993	14 581	2005	13 204	2017	18130
1994	14 351	2006	13 509	2018	19756
1995	14 305	2007	14 174	2019	21797
1996	12 307	2008	14 323	2020	9162
1997	11 067	2009	12 800	2021	14988
1998	13 249	2010	12 721	2022	19448
1999	24 156	2011	11 873		
2000	23 168	2012	11 284		
2001	11 664	2013	12 380		

Emission factors

The calculation of emissions for emission parameters from 1990-2022 were used emission factors taken from GB 2013. The used emission factors are presented in Table 60.

Table 60 Emission factors for source category 1.A.3.ai (i) - International aviation LTO civil

Pollutant	Value	Unit	References
NOx	26	kg/LTO	GB 2013 1.A.3.a. 1.A.5.b Aviation. Table 3-3. pg. 9 (LTO (kg/LTO) — average fleet (B767))
NMVOC	0.2	kg/LTO	GB 2013 1.A.3.a. 1.A.5.b Aviation. Table 3-3. pg. 9 (LTO (kg/LTO) — average fleet (B767))
SOx	1.6	kg/LTO	GB 2013 1.A.3.a. 1.A.5.b Aviation. Table 3-3. pg. 9 (LTO (kg/LTO) — average fleet (B767))
PM2.5	0.15	kg/LTO	GB 2013 1.A.3.a. 1.A.5.b Aviation. Table 3-3. pg. 9 (LTO (kg/LTO) — average fleet (B767))
со	6.1	kg/LTO	GB 2013 1.A.3.a. 1.A.5.b Aviation. Table 3-3. pg. 9 (LTO (kg/LTO) — average fleet (B767))

4.5.2.2. International aviation cruise (civil) - NFR 1.A.3.ai(ii)

The aircraft data of the national flight authority shows a relatively new fleet composition -> Tier 1 emission factors of average fleet are feasible.

4.5.2.2.1. Methodological issues

The total fuel consumption was calculated as sum from gasoline consumption and LTO fuel. The LTO fuel consumption is calculated according to this equation:

LTO fuel = number of LTOs x fuel consumption per LTO (1617 kg/LTO).

Activity Data

The activity data for aviation gasoline consumption has been taken from the Energy statistics 2000-2010[23] for the period 2005-2010 and from the Statistical yearbooks chapter energy balance for the period 2011-2019 [22]. For the period 2000-2004 surrogate method has been used to calculate the consumption related to the passenger numbers. The data is available in the Statistical year books in the Transport chapter for the period 1990–2004, as for the period 2005-2015 data is taken from the

special publication Transport and other services [26], while data after 2015 are taken from the MAKSTAT database [27].

Table 61 Activity data for fuel consumption for source category 1.A.3.ai(ii) - International aviation cruise (civil)

Year	Total fuel (t)	Year	Total fuel(t)	Year	Total fuel(t)
1990	20 648	2001	25 104	2012	8 112
1991	19 461	2002	46 844	2013	10 144
1992	18 156	2003	15 973	2014	11 946
1993	25 118	2004	8 882	2015	13 371
1994	24 722	2005	6 433	2016	15 108
1995	24 643	2006	4 670	2017	19 810
1996	21 202	2007	6 861	2018	22 429
1997	19 066	2008	6 121	2019	26 473
1998	22 824	2009	2 772	2020	8637
1999	41 612	2010	6 867	2021	15 771
2000	28 266	2011	3 652	2022	25 913

Emission factors

Emission factors were taken from GB 2013 (Cruise (kg/t) — average fleet (B767)). These emission factors are given in Table 62 below.

Table 62 Emission factors for 1.A.3.ai(ii) - International aviation cruise (civil)

Pollutant	Value	Unit	References
NOx	12.8	kg/t fuel	GB 2013 1.A.3.a. 1.A.5.b Aviation. Table 3-3. pg. 9 (Cruise (kg/t) — average fleet (B767))
NMVOC	0.5	kg/t fuel	GB 2013 1.A.3.a. 1.A.5.b Aviation. Table 3-3. pg. 9 (Cruise (kg/t) — average fleet (B767))
SOx	1	kg/t fuel	GB 2013 1.A.3.a. 1.A.5.b Aviation. Table 3-3. pg. 9 (Cruise (kg/t) — average fleet (B767))
PM2.5	0.2	kg/t fuel	GB 2013 1.A.3.a. 1.A.5.b Aviation. Table 3-3. pg. 9 (Cruise (kg/t) — average fleet (B767))
СО	1.1	kg/t fuel	GB 2013 1.A.3.a. 1.A.5.b Aviation. Table 3-3. pg. 9 (Cruise (kg/t) — average fleet (B767))

4.5.2.3. Domestic aviation cruise - NFR 1.A.3.aii(ii)

4.5.2.3.1. Methodological issues

The cruse fuel is calculated according to the following equation:

Cruise fuel = total fuel consumption — LTO fuel consumption

The LTO fuel consumption is calculated according to the following equation:

LTO fuel = number of LTOs x fuel consumption per LTO (1617 kg/LTO)

Activity Data

The activity data for calculation of total fuel consumption is taken from the Energy balance from the Statistical yearbooks 1990-1999[21], as well as from the publication Energy statistics 2000-2010[24]. Data on jet fuel and aviation gasoline consumption are available starting from 2005. For the period 1990-2004, surrogate method has been used. The estimates of the activity data were related to the

passenger numbers. The sources of number of LTO have been discussed in the previous chapter. Table 59 provides the Tier 1 calculated activity data.

Domestic Cruise is not occurring (NO) in North Macedonia as there are no flight movements with kerosene within the country. All flight movements with kerosene are international.

Table 63 Activity data for source category 1.A.3.aii(ii) - Domestic aviation cruise (civil)

Year	Fuel consumption (t)	Year	Fuel consumption (t)	Year	Fuel consumption (t)
1990	NO	2001	NO	2012	NO
1991	NO	2002	NO	2013	NO
1992	NO	2003	NO	2014	NO
1993	NO	2004	NO	2015	NO
1994	NO	2005	NO	2016	NO
1995	NO	2006	NO	2017	NO
1996	NO	2007	NO	2018	NO
1997	NO	2008	NO	2019	NO
1998	NO	2009	NO	2020	NO
1999	NO	2010	NO	2021	NO
2000	NO	2011	NO	2022	NO

Emission factors

Emission factors were taken from GB 2013 for all reporting time period. These emission factors are given in Table 64 below.

Table 64 Emission factors for NFR - 1.A.3.aii (ii)

Pollutant	Value	Unit	References		
NOx	4	kg/t fuel	GB 2023 1.A.3.a. 1.A.5.b Aviation. Table 3-4. pg. 20		
СО	1200	kg/t fuel	GB 2023 1.A.3.a. 1.A.5.b Aviation. Table 3-4. pg. 20		
NMVOC	19	kg/t fuel	GB 2023 1.A.3.a. 1.A.5.b Aviation. Table 3-4. pg. 20		
TSP	0	kg/t fuel	GB 2023 1.A.3.a. 1.A.5.b Aviation. Table 3-4. pg. 20		
PM10	0	kg/t fuel	GB 2023 1.A.3.a. 1.A.5.b Aviation. Table 3-4. pg. 20		
PM2.5	0	kg/t fuel	GB 2023 1.A.3.a. 1.A.5.b Aviation. Table 3-4. pg. 20		
SO ₂	1	kg/t fuel	GB 2023 1.A.3.a. 1.A.5.b Aviation. Table 3-4. pg. 20		

4.5.2.3.2. Source-specific uncertainties and time-series consistency

The activity data uncertainty was estimated to be 10% (rating C. cf. chapter 1.7); the emission factor uncertainty for NOx, NMVOC and PM2.5 was estimated to be 40 % (rating B. cf. chapter 1.7) for SO₂ and was estimated to be 20% (rating A).

4.5.2.3.3. Source-specific QA/QC and verification

Standard QA/QC procedures were carried out for this source category i.e. activity data were checked for plausibility and time-series consistency; emission data were checked for completeness and for consistency between the calculation files. NFR tables and the IIR, Info sheet was inserted in the excel calculation files and data on fuel consumption were linked with energy balance. The consumption of

kerosene in military has been deducted from consumption of kerosene in aviation in order not to report double consumption in two different NFR for the period 2015-2022 for which emissions in 1.A.5.b are estimated.

4.5.2.3.4. Source-specific recalculations including changes made in response to the review process No recalculations were done in this category.

4.5.2.3.5. Source-specific planned improvements including those in response to the review process Check and change of used EF with EF from the GB 2023.

4.5.3. Railways-NFR 1.A.3.c

This chapter covers emissions from rail transport and concerns the movement of goods or people by rail. Railway locomotives generally are one of three types: diesel, electric or less frequently steam.

Diesel locomotives either use only diesel engines, for propulsion or in combination with an on-board alternator, or generator to produce electricity which powers their traction motors (diesel-electric). These locomotives fall in three categories:

- shunting locomotives;
- rail-cars;
- line-haul locomotives;

4.5.3.1. Methodology

The Tier 1 approach for railways is a fuel-based methodology and uses the general equation:

$$\mathbf{E}_i = \sum\nolimits_{m} \mathbf{FC}_m \times \mathbf{EF}_{i.m}$$

Where:

E_i = emissions of pollutant i for the period concerned in the inventory (kg or g)

FC_m = fuel consumption of fuel type m for the period and area considered (tons)

EF_i = emission factor of pollutant i for each unit of fuel type m used (kg/tons)

m = fuel type (diesel. gas oil) [5].

The Tier 2 approach is based on apportioning the total fuel used by railways to that used by different generic locomotive technology types as the measure of activity. It assumes that the fuel can be apportion for example using statistics on the number of locomotives, categorised by type, and their average usage, e.g. from locomotive maintenance records. For this approach the algorithm used is:

$$\mathbf{E}_{i} = \sum_{m} \sum_{j} (FC_{j,m} \times EF_{i,j,m})$$

where:

 E_i = emissions of pollutant ifor the period concerned in the inventory (kg or g);

 $FC_{j,m}$ = fuel consumption of fuel type mused by category jfor the period and areaconsidered (tonnes);

EF_{i,j,m}= emission factor of pollutant ifor each unit of fuel type mused by category j(kg/tonnes);

m = fuel type (diesel, gas oil);

j = locomotive category (shunting, rail-car, line-haul)

Activity Data

The activity data for the diesel oil consumption for the period 1990, 1999-2022 was taken from the chapter Energy balance from the Statistical yearbooks for the related period [22]. For the period 1991-1998, an approach has been developed to complete lacking years in the time series by use of passenger km used as surrogate data.

Table 65 Activity data for diesel fuel consumption in source category 1.A.3.c - Railways - Tier 1

Year	Diesel fuel consumption [t]	Year	Diesel fuel consumption [t]	Year	Diesel fuel consumption [t]
1990	7300	2001	3373	2012	3169
1991	5932	2002	2328	2013	2616
1992	3233	2003	2000	2014	2616
1993	1958	2004	2138	2015	1877
1994	1987	2005	2607	2016	2008
1995	1928	2006	3597	2017	2035
1996	3559	2007	3736	2018	2193
1997	4182	2008	3701	2019	2562
1998	4449	2009	3634	2020	1016
1999	3957	2010	3580	2021	1209
2000	4212	2011	3734	2022	1104

For 2022 the Ministry of transport and communication has provided activity data needed for implementation of Tier 2 methodology.

Table 66 Activity data for diesel fuel consumption in source category 1.A.3.c – Railways for 2020 – 2022 Tier 2

Year	Category	Diesel fuel consumption [t]
2020	Line-houl locomotives	519
	Rail cars	497
2021	Line-houl locomotives	604
	Rail cars	605
2022	Line-houl locomotives	478
	Rail cars	626

Emission factors

Emission factors from GB 2023 are used in calculating the emissions for the period 1990-2022. Emission factors used are presented in the Table 67 below.

Table 67 Emission factors for source category 1.A.3 - Railways

Pollutant	Value	Unit	Tier	References
NOx	52.4	kg/t fuel	Tier 1	GB 2023 1.A.3.c Railways, Table 3-1, pg. 8
СО	10.7	kg/t fuel	Tier 1	GB 2023 1.A.3.c Railways, Table 3-1, pg. 8
NMVOC	4.65	kg/t fuel	Tier 1	GB 2023 1.A.3.c Railways, Table 3-1, pg. 8
NH ₃	0.007	kg/t fuel	Tier 1	GB 2023 1.A.3.c Railways, Table 3-1, pg. 8
TSP	1.52	kg/t fuel	Tier 1	GB 2023 1.A.3.c Railways, Table 3-1, pg. 8
PM10	1.44	kg/t fuel	Tier 1	GB 2023 1.A.3.c Railways, Table 3-1, pg. 8
PM2.5	1.37	kg/t fuel	Tier 1	GB 2023 1.A.3.c Railways, Table 3-1, pg. 8
Cd	0.01	g/t fuel	Tier 1	GB 2023 1.A.3.c Railways, Table 3-1, pg. 8
Cr	0.05	g/t fuel	Tier 1	GB 2023 1.A.3.c Railways, Table 3-1, pg. 8
Cu	1.7	g/t fuel	Tier 1	GB 2023 1.A.3.c Railways, Table 3-1, pg. 8
Ni	0.07	g/t fuel	Tier 1	GB 2023 1.A.3.c Railways, Table 3-1, pg. 8
Se	0.01	g/t fuel	Tier 1	GB 2023 1.A.3.c Railways, Table 3-1, pg. 8
Zn	1	g/t fuel	Tier 1	GB 2023 1.A.3.c Railways, Table 3-1, pg. 8
Benzo(a)pyrene	0.03	g/t fuel	Tier 1	GB 2023 1.A.3.c Railways, Table 3-1, pg. 8
Benzo(b)fluorant hene	0.05	g/t fuel	Tier 1	GB 2023 1.A.3.c Railways, Table 3-1, pg. 8
NOx	63	kg/t fuel	Tier 2-Line houl locomotives	GB 2023, 1.A.3.c Railways, Table 3-2, pg.9
СО	18	kg/t fuel	Tier 2-Line houl locomotives	GB 2023, 1.A.3.c Railways, Table 3-2, pg.9
NMVOC	4.8	kg/t fuel	Tier 2-Line houl locomotives	GB 2023, 1.A.3.c Railways, Table 3-2, pg.9
NH3	10	kg/t fuel	Tier 2-Line houl locomotives	GB 2023, 1.A.3.c Railways, Table 3-2, pg.9
TSP	1.8	kg/t fuel	Tier 2-Line houl locomotives	GB 2023, 1.A.3.c Railways, Table 3-2, pg.9
PM10	1.1	kg/t fuel	Tier 2-Line houl locomotives	GB 2023, 1.A.3.c Railways, Table 3-2, pg.9
PM2.5	1.2	kg/t fuel	Tier 2-Line houl locomotives	GB 2023, 1.A.3.c Railways, Table 3-2, pg.9
NOx	39.9	kg/t fuel	Tier 2-Rail cars	GB 2023, 1.A.3.c Railways, Table 3-2, pg.9
СО	10.8	kg/t fuel	Tier 2-Rail cars	GB 2023, 1.A.3.c Railways, Table 3-1, pg. 10
NMVOC	4.7	kg/t fuel	Tier 2-Rail cars	GB 2023, 1.A.3.c Railways, Table 3-1, pg. 10
NH3	10	kg/t fuel	Tier 2-Rail cars	GB 2023, 1.A.3.c Railways, Table 3-1, pg. 10
TSP	1	kg/t fuel	Tier 2-Rail cars	GB 2023, 1.A.3.c Railways, Table 3-1, pg. 10
PM10	1.1	kg/t fuel	Tier 2-Rail cars	GB 2023, 1.A.3.c Railways, Table 3-1, pg. 10
PM2.5	1.5	kg/t fuel	Tier 2-Rail cars	GB 2023, 1.A.3.c Railways, Table 3-1, pg. 10

4.5.3.2. Source-specific uncertainties and time-series consistency

The activity data uncertainty was estimated to be 10% (rating C. cf. chapter 1.7); the emission factor uncertainty for NOx, NMVOC and PM2.5 was estimated to be 40% (rating B. cf. chapter 1.7), for NH₃ was estimated to be 125% (rating D).

4.5.3.3. Source-specific QA/QC and verification

Standard QA/QC procedures were carried out for this source category. i.e. activity data were checked for plausibility and time-series consistency; emission data were checked for completeness and for consistency between the calculation files, NFR tables and the IIR, Info sheet was inserted in the excel calculation file and data on fuel consumption were linked with energy balance. Activity data were also checked in the MAKSTAT database.

4.5.3.4. Source-specific recalculations including changes made in response to the review process No recalculations were done in this category.

4.5.3.5. Source-specific planned improvements including those in response to the review process

National inventory team has provided detailed data from Macedonian railways, and conducted Tier 2 methodology for 2020-2022 and will make effort to implement Tier 2 methodology on whole time series in the future submissions.

4.5.4. National navigation - using diesel fuel oil - NFR 1.A.3.d.ii

Emissions from fuels used by vessels of all flags that depart and arrive in the same country (excludes fishing) includes small leisure boats. Republic of North Macedonia has three natural lakes, but only Ohrid Lake offers tourist boat transport. There were only four boats in 2022. Emissions from fuel consumption are calculated and presented below.

There is no international/maritime navigation (bunkers fuels) – so the source category International maritime bunkers are reported as "NO".

4.5.5. Methodological issues

See chapter 4.4.1

Activity Data

The activity data on diesel consumption in lake transport have been provided from the "Kapetanija Ohrid" within the frames of the Ministry of Transport and Communications for 2011. Within the Twinning project the data gaps were filled by using the number of boats and passenger km in lake transport. All data were taken from the Statistical yearbook – chapter transport. Data on sulfur content was reported by the Ministry of Economy.

Table 68 Activity data for diesel consumption for source category 1.A.3.d.ii - National navigation - using diesel fuel oil 1990-2022

Year	Diesel fuel consumption [t]	Year	Diesel fuel consumption [t]	Year	Diesel fuel consumption [t]
1990	87.93	2001	7.96	2012	61.18
1991	15.65	2002	26.47	2013	41.38
1992	10.96	2003	12.93	2014	50.43
1993	7.08	2004	6.26	2015	59.55

Year	Diesel fuel consumption [t]	Year	Diesel fuel consumption [t]	Year	Diesel fuel consumption [t]
1994	10.00	2005	19.06	2016	61.11
1995	21.71	2006	21.57	2017	68.53
1996	8.71	2007	72.34	2018	73.63
1997	6.47	2008	174.22	2019	77.04
1998	25.52	2009	164.28	2020	25.59
1999	18.03	2010	111.06	2021	38.25
2000	21.85	2011	57.85	2022	60.09

For the calculation of emissions for emission parameters from 1990-2022 the used emission factors were taken from GB 2019 [19]. These emission factors are given in Table 69 below.

Table 69 Emission factors for source category 1.A.3.dii – National navigation

Pollutant	Value	Unit	References
NOx	78.5	kg/t fuel	GB 2019, 1.A.3.d.i, 1.A.3.d.ii, 1.A.4.c.iii International navigation, national navigation, national fishing, Other Mobile, Table 3-2, pg. 15
СО	7.4	kg/t fuel	GB 2019, 1.A.3.d.i, 1.A.3.d.ii, 1.A.4.c.iii International navigation, national navigation, national fishing, Other Mobile, Table 3-2, pg. 15
NMVOC	2.8	kg/t fuel	GB 2019, 1.A.3.d.i, 1.A.3.d.ii, 1.A.4.c.iii International navigation, national navigation, national fishing, Other Mobile, Table 3-2, pg. 15
TSP	1.5	kg/t fuel	GB 2019, 1.A.3.d.i, 1.A.3.d.ii, 1.A.4.c.iii International navigation, national navigation, national fishing, Other Mobile, Table 3-2, pg. 15
PM10	1.5	kg/t fuel	GB 2019, 1.A.3.d.i, 1.A.3.d.ii, 1.A.4.c.iii International navigation, national navigation, national fishing, Other Mobile, Table 3-2, pg. 15
PM2.5	1.4	kg/t fuel	GB 2019, 1.A.3.d.i, 1.A.3.d.ii, 1.A.4.c.iii International navigation, national navigation, national fishing, Other Mobile, Table 3-2, pg. 15
Pb	0.13	kg/t fuel	GB 2019, 1.A.3.d.i, 1.A.3.d.ii, 1.A.4.c.iii International navigation, national navigation, national fishing, Other Mobile, Table 3-2, pg. 15
Cd	0.01	g/t fuel	GB 2019, 1.A.3.d.i, 1.A.3.d.ii, 1.A.4.c.iii International navigation, national navigation, national fishing, Other Mobile, Table 3-2, pg. 15
Hg	0.03	g/t fuel	GB 2019, 1.A.3.d.i, 1.A.3.d.ii, 1.A.4.c.iii International navigation, national navigation, national fishing, Other Mobile, Table 3-2, pg. 15
As	0.04	g/t fuel	GB 2019, 1.A.3.d.i, 1.A.3.d.ii, 1.A.4.c.iii International navigation, national navigation, national fishing, Other Mobile, Table 3-2, pg. 15
Cr	0.05	g/t fuel	GB 2019, 1.A.3.d.i, 1.A.3.d.ii, 1.A.4.c.iii International navigation, national navigation, national fishing, Other Mobile, Table 3-2, pg. 15
Cu	0.88	g/t fuel	GB 2019, 1.A.3.d.i, 1.A.3.d.ii, 1.A.4.c.iii International navigation, national navigation, national fishing, Other Mobile, Table 3-2, pg. 15
Ni	1	g/t fuel	GB 2019, 1.A.3.d.i, 1.A.3.d.ii, 1.A.4.c.iii International navigation, national navigation, national fishing, Other Mobile, Table 3-2, pg. 15
Se	0.1	g/t fuel	GB 2019, 1.A.3.d.i, 1.A.3.d.ii, 1.A.4.c.iii International navigation, national navigation, national fishing, Other Mobile, Table 3-2, pg. 15
Zn	0.5	g/t fuel	GB 2019, 1.A.3.d.i, 1.A.3.d.ii, 1.A.4.c.iii International navigation, national navigation, national fishing, Other Mobile, Table 3-2, pg. 15

Pollutant	Value	Unit	References
PCDD/PCDF	0.13	ug I-TEQ/t	GB 2019, 1.A.3.d.i, 1.A.3.d.ii, 1.A.4.c.iii International navigation, national navigation, national fishing, Other Mobile, Table 3-2, pg. 15
НСВ	0.08	mg/t fuel	GB 2019, 1.A.3.d.i, 1.A.3.d.ii, 1.A.4.c.iii International navigation, national navigation, national fishing, Other Mobile, Table 3-2, pg. 15
PCBs	0.38	mg/t fuel	GB 2019, 1.A.3.d.i, 1.A.3.d.ii, 1.A.4.c.iii International navigation, national navigation, national fishing, Other Mobile, Table 3-2, pg. 15

Table 70 National content of sulfur in diesel used for calculation of SOx emissions 1.A.3.dii – National navigation

	ational navigation					
Period	% (m/m) sulfur	ppm (mg/kg)	ppm			
1990 - 2006	0.2	2000	8			
2006 - 2007	0.035	350	1.4			
2007 - 2009	0.005	50	0.2			
From 2009 onwards	0.001	10	0.04			
Calculations						
	0.5	20				
1990 - 2006	0.2	8	0.2*20/0.5			
2006 - 2007	0.035	1.4	0.035*20/0.5			
2007 - 2009	0.005	0.2	0.005*20/0.5			
From 2009 onwards	0.001	0.04	0.001*20/0.5			

Fuel sulfur content data is provided by the Ministry of economy.

4.5.5.1. Source-specific uncertainties and time-series consistency

No specific uncertainty analysis is done for this category.

4.5.5.2. Source-specific QA/QC and verification

Standard QA/QC procedures were carried out for this source category i.e. activity data were checked for plausibility and time-series consistency; emission data were checked for completeness and for consistency between the calculation files, NFR tables and the IIR.

4.5.5.3. Source-specific recalculations including changes made in response to the review process No recalculations were done in this category

4.5.5.4. Source-specific planned improvements including those in response to the review process Change of emission factors with 2023 EMEP/EEA Guidebook.

4.5.6. Other. Mobile (including military. land based and recreational boats) – NFR 1.A.5.b

Emissions from fuels used in the Military have been reported from 2015 onwards. For the previous years (years before 2015) it is assumed that they are included elsewhere, namely within the NFR categories 1.A.3bii, 1.A3biii and 1.A.3aii.

4.5.6.1. Methodological issues

See chapter 4.4.1

Activity Data

The activity data on diesel consumption were obtained from the Ministry of defense. Reported data for the years 2015-2022 are presented in the following table.

Table 71 Activity data for liquid fuel and aviation gasoline consumption for source category 1.A.5.b – Other, Mobile for 2015-2022

Type of fuel [tons]	2015	2016	2017	2018	2019	2020	2021	2022
Liquefied fuels	672	873	715	696	695	583	676	566
Aviation gasoline	22	166	364	284	460	310	372	459

Diesel fuel consumption has been reported in L and converted in tons by use of diesel density of 0.837kg/m³.

Emission factors

See table 70 and 78.

4.5.6.2. Source-specific uncertainties and time-series consistency

No specific uncertainty analysis is done for this category.

4.5.6.3. Source-specific QA/QC and verification

Standard QA/QC procedures were carried out for this source category i.e. activity data were checked for plausibility and time-series consistency; emission data were checked for completeness and for consistency between the calculation files, NFR tables and the IIR.

4.5.6.4. Source-specific recalculations including changes made in response to the review process No recallulations were done in this category.

4.5.6.5. Source-specific planned improvements including those in response to the review process No planned improvements in this category.

4.6. Small Combustion and Non-road mobile sources and machinery — NFR 1.A.4

This category includes emissions from commercial/institutional, residential, and agricultural fuel combustion, which is mainly for heating and hot water generation purpose.

4.6.1. Methodological issues

The Tier 1 methodology has been selected by using default emission factors from the Guidebook 2009/2016. The Tier 1 approach for process emissions from small combustion installations uses the general equation:

$$E_{pollutants} = \sum AR_{fuel\ consumption} \times EF_{fuel\ pollutnat}$$

where:

 $E_{\text{pollutant}}$ = the emission of the specified pollutant.

 $AR_{fuelconsumption}$ = the activity rate for fuel consumption.

 $EF_{pollutant}$ = the emission factor for this pollutant.

4.6.2. Source-specific uncertainties and time-series consistency

Source-specific uncertainties are described below per category, considered the uncertainty of the activity data and emission factors for 1.A.4.a, 1.A.4.b and 1.A.4.c. The jumps and deeps in the emissions in this sector are mainly due correlation of fuel consumption with the temperature as well as change of methodology in the energy balances over the years.

4.6.3. Source-specific QA/QC and verification

4.6.4. Source-specific recalculations including changes made in response to the review process

Standard QA/QC procedures were carried out for this source category. i.e., activity data were checked for plausibility and time-series consistency; emission data were checked for completeness and for consistency between the calculation files, NFR tables and the IIR. Recalculations were performed for 2022 emissions due to use of final data from energy balance for biomass, coal and liquid fuel. Source-specific planned improvements including those in response to the review process.

Use of higher Tier level will be implemented in future submissions. Establishment of National environmental information system is undergoing. When this system will be implemented detail data from administrative capacities will be gathered and activity data for use of higher Tier level will be available. Currently the system is in testing phase for bugs, and it is planned to be put in use for the next reporting round.

4.6.5. Commercial/Institutional – stationary combustion – NFR 1.A.4.ai

Within the Commercial/Institutional sector, mainly liquid fuels are used. The amount of biomass and coal has been reduced over the years while contribution of natural gas in overall combustion has increased.

4.6.5.1. Methodological Issues

Activity data

Activity data for this sector has been taken from the Statistical yearbooks – chapter energy balance for the period 1990-2022. For the period 1990-1998, activity data were taken from the GHGs inventory.

Table 72 Activity data for the source category 1.A.4.ai Commercial/Institutional – stationary combustion

Year	Biomass [TJ]	Coal [TJ]	Gaseous Fuels [TJ]	Liquid Fuels [TJ]
1990	NA	144	NA	387
1991	NA	144	NA	NA
1992	NA	243	NA	NA
1993	NA	152	NA	NA
1994	NA	152	NA	NA
1995	NA	152	NA	NA
1996	NA	152	NA	NA

Year	Biomass [TJ]	Coal [TJ]	Gaseous Fuels [TJ]	Liquid Fuels [TJ]
1997	NA	152	NA	NA
1998	712	152	NA	2640
1999	712	607	NA	3322
2000	848	58	NA	998
2001	NA	33	NA	705
2002	NA	196	NA	9337
2003	321	246	NA	3407
2004	325	656	NA	2450
2005	209	193	120	5169
2006	351	178	112	4094
2007	334	207	103	3844
2008	436	27	95	2154
2009	610	16	77	3700
2010	528	20	79	3527
2011	220	4	83	1509
2012	357	52	91	1821
2013	196	62	109	1780
2014	279	21	198	1558
2015	181	24	226	1896
2016	174	27	235	2046
2017	190	34	265	1832
2018	184	27	248	1645
2019	180	24	240	1591
2020	183	20	244	1255
2021	253	16	285	951
2022	246	15	190	84

Emission factors are taken from GB 2023. Emission factors for different type of fuels are presented in tables 73-76.

Table 73 Emission factors for biomass for source category 1.A.4.ai - Commercial/Institutional – stationary combustion

Pollutant	Value	Unit	References
NOx	91	g/GJ	GB 2023 Table 3-10 emission factor for source category 1.A.4.a.i. page 39
NMVOC	300	g/GJ	GB 2023 Table 3-10 emission factor for source category 1.A.4.a.i. page 39
SOx	11	g/GJ	GB 2023 Table 3-10 emission factor for source category 1.A.4.a.i. page 39
PM2.5	160	g/GJ	GB 2023 Table 3-10 emission factor for source category 1.A.4.a.i. page 39
PM10	163	g/GJ	GB 2023 Table 3-10 emission factor for source category 1.A.4.a.i. page 39
TSP	170	g/GJ	GB 2023 Table 3-10 emission factor for source category 1.A.4.a.i. page 39

Pollutant	Value	Unit	References
ВС	28	% PM2.5	GB 2023 Table 3-10 emission factor for source category 1.A.4.a.i. page 39
СО	570	mg/GJ	GB 2023 Table 3-10 emission factor for source category 1.A.4.a.i. page 39
Pb	27	mg/GJ	GB 2023 Table 3-10 emission factor for source category 1.A.4.a.i. page 39
Cd	13	mg/GJ	GB 2023 Table 3-10 emission factor for source category 1.A.4.a.i. page 39
Hg	0.56	mg/GJ	GB 2023 Table 3-10 emission factor for source category 1.A.4.a.i. page 39
As	0.19	mg/GJ	GB 2023 Table 3-10 emission factor for source category 1.A.4.a.i. page 39
Cr	23	mg/GJ	GB 2023 Table 3-10 emission factor for source category 1.A.4.a.i. page 39
Cu	6	mg/GJ	GB 2023 Table 3-10 emission factor for source category 1.A.4.a.i. page 39
Ni	2	mg/GJ	GB 2023 Table 3-10 emission factor for source category 1.A.4.a.i. page 39
Se	0.5	mg/GJ	GB 2023 Table 3-10 emission factor for source category 1.A.4.a.i. page 39
Zn	512	mg/GJ	GB 2023 Table 3-10 emission factor for source category 1.A.4.a.i. page 39
PCDD/ PCDF	100	ng I- TEQ/GJ	GB 2023 Table 3-10 emission factor for source category 1.A.4.a.i. page 39
benzo(a) pyren	10	mg/GJ	GB 2023 Table 3-10 emission factor for source category 1.A.4.a.i. page 39
benzo(b) fluoranthene	16	mg/GJ	GB 2023 Table 3-10 emission factor for source category 1.A.4.a.i. page 39
benzo(k) fluoranthene	5	mg/GJ	GB 2023 Table 3-10 emission factor for source category 1.A.4.a.i. page 39
Indeno (1,2,3-cd) pyren	4	mg/GJ	GB 2023 Table 3-10 emission factor for source category 1.A.4.a.i. page 39
НСВ	5	mg/GJ	GB 2023 Table 3-10 emission factor for source category 1.A.4.a.i. page 39
PCB	0.06	mg/GJ	GB 2023 Table 3-10 emission factor for source category 1.A.4.a.i. page 39

Table 74 Emission factors for solid fuels for source category 1.A.4.ai - Commercial/Institutional – stationary combustion

Pollutant	Value	Unit	References
NOx	173	g/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 36
NMVOC	88.8	g/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 36
SOx	900	g/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 36
PM2.5	108	g/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 36
PM10	117	g/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 36
ВС	6.4	%PM2.5	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 36
TSP	124	g/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 36
СО	932	g/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 36
Pb	134	mg/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 36
Cd	1.8	mg/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 36
Hg	7.9	mg/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 36
As	4	mg/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 36
Cr	13.5	mg/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 36
Cu	17.5	mg/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 36

Pollutant	Value	Unit	References
Ni	13	mg/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 36
Se	1.8	mg/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 36
Zn	200	mg/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 36
РСВ	170	μg/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 36
PCDD/PCDF	203	ng I-TEQ/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 36
benzo(a) pyren	45.5	mg/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 36
benzo(b) fluoranthene	58.9	mg/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 36
benzo(k) fluoranthene	23.7	mg/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 36
Indeno (1.2.3-cd) pyren	18.5	mg/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 36
НСВ	0.62	μg/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 36

Table 75 Emission factors for gaseous fuels for source category 1.A.4.ai - Commercial/Institutional – stationary combustion

Pollutant	Value	Unit	References
NOx	74	g/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 37
NMVOC	23	g/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 37
SOx	0.67	g/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 37
PM2.5	0.78	g/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 37
PM10	0.78	g/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 37
TSP	0.78	g/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 37
ВС	4	% PM2.5	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 37
со	29	mg/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 37
Pb	0.011	mg/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 37
Cd	0.00009	mg/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 37
Hg	0.1	mg/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 37
As	0.1	mg/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 37
Cr	0.013	mg/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 37
Cu	0.0026	mg/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 37
Ni	0.013	mg/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 37
Se	0.058	mg/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 37
Zn	0.73	mg/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 37
PCDD/ PCDF	0.52	ng I-TEQ/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 37
benzo(a) pyren	0.72	μg/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 37
benzo(b) fluoranthene	2.9	μg/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 37
benzo(k) fluoranthene	1.1	μg/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 37
Indeno (1,2,3-cd) pyren	1.08	μg/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 37

Table 76 Emission factors for liquid fuels for source category 1.A.4.ai - Commercial/Institutional – stationary combustion

Pollutant	Value	Unit	References
NOx	306	g/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 38
NMVOC	20	g/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 38
SOx	94	g/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 38
PM2.5	18	g/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 38
PM10	21	g/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 38
TSP	21	g/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 38
ВС	56	%PM2.5	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 38
СО	93	g/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 38
Pb	8	mg/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 38
Cd	0.15	mg/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 38
Hg	0.1	mg/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 38
As	0.5	mg/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 38
Cr	10	mg/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 38
Cu	3	mg/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 38
Ni	125	mg/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 38
Se	0.1	mg/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 38
Zn	18	mg/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 38
PCDD/ PCDF	6	ng I-TEQ/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 38
benzo(a) pyren	1.9	μg/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 38
benzo(b) fluoranthene	15	μg/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 38
benzo(k) fluoranthene	1.7	μg/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 38
Indeno (1,2,3-cd) pyren	1.5	μg/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 38
НСВ	0.22	μg/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 38
PCB	0.13	μg/GJ	GB 2023 Table 3-7 emission factor for source category 1.A.4.a.i. page 38

4.6.5.2. Source-specific uncertainties and time-series consistency

The activity data uncertainty was estimated to be 10% (rating C. cf. chapter 1.7); the emission factor uncertainty for SO_2 was estimated to be 20% (rating A. cf. chapter 1.7), for SOx and NMVOC was estimated to be 40% (rating B) and for PM2.5.(125% rating C).

4.6.5.3. Source-specific QA/QC and verification

Standard QA/QC procedures were carried out for this source category, i.e. activity data were checked for plausibility and time-series consistency; emission data were checked for completeness and for consistency between the calculation files, NFR tables and the IIR.

4.6.5.4. Source-specific recalculations including changes made in response to the review process

Recalculations were done for 2021 emissions within the category 1.A.4.ai due to use of final consumption data for this year only for biomass and liquid fuel.

4.6.5.5. Source-specific planned improvements including those in response to the review process

Tier 2 methodology will be introduced when there will be available activity data. Namely, there is ongoing establishment of National environmental information system that will enable us to collect detail data from this sector in the future. It is expected that this system will function from next year.

4.6.6. Commercial/Institutional – stationary combustion – NFR 1.A.4.aii

Within the Commercial/Institutional sector, liquid fuel- diesel is used. The NFR sector is for the first time introduced in the inventory due to available activity data for the period 2011-2022. For the previous years the emissions were noted as IE in 1.A.4.ai, as it was recommended by previous stage 3 review.

4.6.6.1. Methodological Issues

Activity data

Activity data for this sector has been taken from the MAKSTAT database; activity data were available only for the period 2011-2022.

Table 77 Activity data for the source category 1.A.4.aii Commercial/Institutional: Mobile

Year	Diesel [TJ]
1990	IE
1991	IE
1992	IE
1993	IE
1994	IE
1995	IE
1996	IE
1997	IE
1998	IE
1999	IE
2000	IE
2001	IE
2002	IE
2003	IE
2004	IE
2005	IE
2006	IE
2007	IE
2008	IE
2009	IE
2010	IE

Year	Diesel [TJ]
2011	722
2012	1486
2013	669
2014	684
2015	694
2016	694
2017	739
2018	741
2019	800
2020	704
2021	814
2022	815

Table 78 Emission factors for liquid fuels for source category 1.A.4.aii - Commercial/Institutional – mobile

illoplie	Duic			
Pollutant	Value	Unit	References	
NOx	32629	g/t	GB 2023, Table 3-1 emission factor for source category, 1.A.4.a.ii, page 23	
NMVOC	3377	g/t	GB 2023, Table 3-1 emission factor for source category, 1.A.4.a.ii, page 23	
NH3	8	g/t	GB 2023, Table 3-1 emission factor for source category, 1.A.4.a.ii, page 23	
PM2.5	2104	g/t	GB 2023, Table 3-1 emission factor for source category, 1.A.4.a.ii, page 23	
PM10	2104	g/t	GB 2023, Table 3-1 emission factor for source category, 1.A.4.a.ii, page 23	
TSP	2104	g/t	GB 2023, Table 3-1 emission factor for source category, 1.A.4.a.ii, page 23	
ВС	1306	g/t	GB 2023, Table 3-1 emission factor for source category, 1.A.4.a.ii, page 23	
СО	10774	g/t	GB 2023, Table 3-1 emission factor for source category, 1.A.4.a.ii, page 23	
Cd	0.01	mg/t	GB 2023, Table 3-1 emission factor for source category, 1.A.4.a.ii, page 23	
Cr	0.05	mg/t	GB 2023, Table 3-1 emission factor for source category, 1.A.4.a.ii, page 23	
Cu	1.7	mg/t	GB 2023, Table 3-1 emission factor for source category, 1.A.4.a.ii, page 23	
Ni	0.07	mg/t	GB 2023, Table 3-1 emission factor for source category, 1.A.4.a.ii, page 23	
Se	0.01	mg/t	GB 2023, Table 3-1 emission factor for source category, 1.A.4.a.ii, page 23	
Zn	1	mg/t	GB 2023, Table 3-1 emission factor for source category, 1.A.4.a.ii, page 23	
benzo(a) pyren	30	μg/t	GB 2023, Table 3-1 emission factor for source category, 1.A.4.a.ii, page 23	
benzo(b) fluoranthene	60	μg/t	GB 2023, Table 3-1 emission factor for source category, 1.A.4.a.ii, page 23	

4.6.6.2. Source-specific uncertainties and time-series consistency

No specific uncertainty analysis was calculated for this sector.

4.6.6.3. Source-specific QA/QC and verification

Standard QA/QC procedures were carried out for this source category, i.e. activity data were checked for plausibility and time-series consistency; emission data were checked for completeness and for consistency between the calculation files, NFR tables and the IIR.

4.6.6.4. Source-specific recalculations including changes made in response to the review process

Recalculations were done for 2021 emissions within the category 1.A.4.ai due to use of final consumption data for this year. EF for benzo(b) fluoranthene changed due use of GB 2023.

4.6.6.5. Source-specific planned improvements including those in response to the review process No planned activities for this category.

4.6.7. Commercial/Institutional – stationary combustion – NFR 1.A.b.i

The survey "Energy consumption in households 2014" from has been conducted in 2015 by the *State Statistical Office* and published in 2016. For this survey, a representative sample of 3500 households was selected.

Beside other information, the report provides information about construction age, average area of dwellings and heated area, type of insulation and finally the total energy consumption of the approximately 559 thousand households.

The following table presents energy consumption of households in 2014.

Table 79 Consumption and Number of households using the type of energy

Type of energy	Consumption	Number of households using the type of energy
Electricity	3 118 365 (MWh)	559 187
Fuel wood	1 328 979 (m3)	345 658
Wood of fruit trees and other plant residues	32 243 (m3)	27 242
Wood residues. wood briquettes and pellets	19 404 (t)	8 078
Coal	4 462 (t)	2 555
LPG	5 585 (t)	87 739
Natural gas	49 460 (Nm3)	N/A
Heating oil	4 822 (m3)	3 633
Derived heat	327 082 (MWh)	46 590
Wood mass consumed for other purposes (for food in winter. producing brandy. etc.)	149 366	N/A

4.6.7.1. Methodological Issues

Activity data

The outcome of the survey showed that biomass consumption is a factor of 2.5 higher than the final energy consumption, published in official energy statistics. Therefore, the activity data for biomass has been adjusted by multiplying the energy consumption from energy statistics by this factor for the complete reporting period.

Energy statistics data were not available for 1991 to 1997 for this source category therefore the consumption of biomass, liquid fuels and coal has been gap filled by backward linear trend interpolation of 1998-2010 energy statistics.

The statistical data after 2005 were taken from MAKSTAT database. These numbers were more representative but still there may be some underestimation of the consumed biomass due to still existing illegal cut of woods, especially in the rural areas.

Table 80 Activity data for source category 1.A.4.bi - Residential: Stationary

Year	Biomass [TJ]	Coal [TJ]	Gaseous Fuels [TJ]	Liquid Fuels [TJ]
1990	15 814	186	NO	397
1991	13 688	333	NO	863
1992	14 961	323	NO	921
1993	16 774	323	NO	980
1994	16 024	304	NO	1038
1995	16 024	294	NO	1097
1996	16 024	284	NO	1156
1997	16 024	275	NO	1214
1998	15 273	213	NO	1225
1999	16 028	276	NO	1326
2000	19 040	235	NO	1394
2001	14 811	177	NO	1435
2002	14 654	227	NO	1513
2003	16 325	228	NO	1577
2004	16 271	248	NO	1657
2005	8 648	161	NO	1687
2006	8 618	115	NO	1757
2007	8 055	114	NO	1890
2008	7 906	72	NO	1812
2009	8 069	47	NO	1895
2010	7 946	53	NO	1852
2011	8 664	38	NO	1896
2012	9 416	40	NO	1172
2013	9 262	39	0.3901	535
2014	9 694	27	2.6039	432
2015	9 336	24	2.6039	464
2016	7 862	25	3.8264	476
2017	9 006	25	6.2694	490
2018	7 513	19	7.7307	456
2019	7 761	18	8.2879	372
2020	8 055	17	10.3259	354

Year	Biomass [TJ]	Coal [TJ]	Gaseous Fuels [TJ]	Liquid Fuels [TJ]
2021	8 156	17	12.1602	364
2022	7 902	5	5.8283	316

For biomass, the default emission factors were updated and taken for this submission from Guidebook 2023. Emission factors for different type of fuels are presented in the four following tables.

Table 81 Emission factors for biomass for source category 1.A.4.bi - Residential: Stationary

Pollutant	Value	Unit	References
NOx	50	g/GJ	GB 2023, Table 3-6 emission factor for source category, 1.A.4.b.i, page 35
NMVOC	600	g/GJ	GB 2023, Table 3-6 emission factor for source category, 1.A.4.b.i, page 35
SOx	11	g/GJ	GB 2023, Table 3-6 emission factor for source category, 1.A.4.b.i, page 35
NH ₃	8	g/GJ	GB 2023, Table 3-6 emission factor for source category, 1.A.4.b.i, page 35
PM2.5	740	g/GJ	GB 2023, Table 3-6 emission factor for source category, 1.A.4.b.i, page 35
PM10	760	g/GJ	GB 2023, Table 3-6 emission factor for source category, 1.A.4.b.i, page 35
TSP	800	g/GJ	GB 2023, Table 3-6 emission factor for source category, 1.A.4.b.i, page 35
ВС	10	%PM2.5	GB 2023, Table 3-6 emission factor for source category, 1.A.4.b.i, page 35
СО	4000	g/GJ	GB 2023, Table 3-6 emission factor for source category, 1.A.4.b.i, page 35
Pb	27	mg/GJ	GB 2023, Table 3-6 emission factor for source category, 1.A.4.b.i, page 35
Cd	13	mg/GJ	GB 2023, Table 3-6 emission factor for source category, 1.A.4.b.i, page 35
Hg	0.56	mg/GJ	GB 2023, Table 3-6 emission factor for source category, 1.A.4.b.i, page 35
As	0.19	mg/GJ	GB 2023, Table 3-6 emission factor for source category, 1.A.4.b.i, page 35
Cr	23	mg/GJ	GB 2023, Table 3-6 emission factor for source category, 1.A.4.b.i, page 35
Cu	6	mg/GJ	GB 2023, Table 3-6 emission factor for source category, 1.A.4.b.i, page 35
Ni	2	mg/GJ	GB 2023, Table 3-6 emission factor for source category, 1.A.4.b.i, page 35
Se	0.5	mg/GJ	GB 2023, Table 3-6 emission factor for source category, 1.A.4.b.i, page 35
Zn	512	mg/GJ	GB 2023, Table 3-6 emission factor for source category, 1.A.4.b.i, page 35
РСВ	0.06	mg/GJ	GB 2023, Table 3-6 emission factor for source category, 1.A.4.b.i, page 35
PCDD/PCDF	800	ng I-TEQ/GJ	GB 2023, Table 3-6 emission factor for source category, 1.A.4.b.i, page 35
benzo(a) pyren	121	mg/GJ	GB 2023, Table 3-6 emission factor for source category, 1.A.4.b.i, page 35
benzo(b) fluoranthene	111	mg/GJ	GB 2023, Table 3-6 emission factor for source category, 1.A.4.b.i, page 35
benzo(k) fluoranthene	42	mg/GJ	GB 2023, Table 3-6 emission factor for source category, 1.A.4.b.i, page 35
Indeno (1.2.3-cd) pyren	71	mg/GJ	GB 2023, Table 3-6 emission factor for source category, 1.A.4.b.i, page 35
НСВ	5	μg/GJ	GB 2023, Table 3-6 emission factor for source category, 1.A.4.b.i, page 35

Table 82 Emission factors for coal for source category 1.A.4.bi - Residential: Stationary

Pollutant	Value	Unit	References	
NOx	110	g/GJ	GB 2023, Table 3-3 emission factor for source category, 1.A.4.b.i, page 32	

Pollutant	Value	Unit	References
NMVOC	484	g/GJ	GB 2023, Table 3-3 emission factor for source category, 1.A.4.b.i, page 32
SOx	900	g/GJ	GB 2023, Table 3-3 emission factor for source category, 1.A.4.b.i, page 32
NH ₃	0.3	g/GJ	GB 2023, Table 3-3 emission factor for source category, 1.A.4.b.i, page 32
PM2.5	398	g/GJ	GB 2023, Table 3-3 emission factor for source category, 1.A.4.b.i, page 32
ВС	6.4	% PM2.5	GB 2023, Table 3-3 emission factor for source category, 1.A.4.b.i, page 32
PM10	404	g/GJ	GB 2023, Table 3-3 emission factor for source category, 1.A.4.b.i, page 32
TSP	444	g/GJ	GB 2023, Table 3-3 emission factor for source category, 1.A.4.b.i, page 32
СО	4600	g/GJ	GB 2023, Table 3-3 emission factor for source category, 1.A.4.b.i, page 32
ВС	6.4	% of PM2.5	GB 2023, Table 3-3 emission factor for source category, 1.A.4.b.i, page 32
Pb	130	mg/GJ	GB 2023, Table 3-3 emission factor for source category, 1.A.4.b.i, page 32
Cd	1.5	mg/GJ	GB 2023, Table 3-3 emission factor for source category, 1.A.4.b.i, page 32
Hg	5.1	mg/GJ	GB 2023, Table 3-3 emission factor for source category, 1.A.4.b.i, page 32
As	2.5	mg/GJ	GB 2023, Table 3-3 emission factor for source category, 1.A.4.b.i, page 32
Cr	11.2	mg/GJ	GB 2023, Table 3-3 emission factor for source category, 1.A.4.b.i, page 32
Cu	22.3	mg/GJ	GB 2023, Table 3-3 emission factor for source category, 1.A.4.b.i, page 32
Ni	12.7	mg/GJ	GB 2023, Table 3-3 emission factor for source category, 1.A.4.b.i, page 32
Se	120	mg/GJ	GB 2023, Table 3-3 emission factor for source category, 1.A.4.b.i, page 32
Zn	220	mg/GJ	GB 2023, Table 3-3 emission factor for source category, 1.A.4.b.i, page 32
РСВ	170	μg/GJ	GB 2023, Table 3-3 emission factor for source category, 1.A.4.b.i, page 32
PCDD/PCDF	800	ng I- TEQ/GJ	GB 2023, Table 3-3 emission factor for source category, 1.A.4.b.i, page 32
benzo(a) pyren	230	mg/GJ	GB 2023, Table 3-3 emission factor for source category, 1.A.4.b.i, page 32
benzo(b) fluoranthene	330	mg/GJ	GB 2023, Table 3-3 emission factor for source category, 1.A.4.b.i, page 32
benzo(k) fluoranthene	130	mg/GJ	GB 2023, Table 3-3 emission factor for source category, 1.A.4.b.i, page 32

Pollutant	Value	Unit	References		
Indeno (1.2.3-cd) pyren	110	mg/GJ	GB 2023, Table 3-3 emission factor for source category, 1.A.4.b.i, page 32		
НСВ	0.62	μg/GJ	GB 2023, Table 3-3 emission factor for source category, 1.A.4.b.i, page 32		

Table 83 Emission factors for natural gas for source category 1.A.4.bi - Residential: Stationary

NOx NMVOC	51	g/GJ	GB 2023, Table 3-4 emission factor for source category, 1.A.4.b.i, page
NMVOC		3,	33
	1.9	g/GJ	GB 2023, Table 3-4 emission factor for source category, 1.A.4.b.i, page 33
SOx	0.3	g/GJ	GB 2023, Table 3-4 emission factor for source category, 1.A.4.b.i, page 33
PM2.5	1.2	g/GJ	GB 2023, Table 3-4 emission factor for source category, 1.A.4.b.i, page 33
ВС	5.4	% PM2.5	GB 2023, Table 3-4 emission factor for source category, 1.A.4.b.i, page 33
PM10	1.2	g/GJ	GB 2023, Table 3-4 emission factor for source category, 1.A.4.b.i, page 33
TSP	1.2	g/GJ	GB 2023, Table 3-4 emission factor for source category, 1.A.4.b.i, page 33
со	26	g/GJ	GB 2023, Table 3-4 emission factor for source category, 1.A.4.b.i, page 33
Pb	0.0015	mg/GJ	GB 2023, Table 3-4 emission factor for source category, 1.A.4.b.i, page 33
Cd	0.00025	mg/GJ	GB 2023, Table 3-4 emission factor for source category, 1.A.4.b.i, page 33
Hg	0.1	mg/GJ	GB 2023, Table 3-4 emission factor for source category, 1.A.4.b.i, page 33
As	0.12	mg/GJ	GB 2023, Table 3-4 emission factor for source category, 1.A.4.b.i, page 33
Cr	0.00076	mg/GJ	GB 2023, Table 3-4 emission factor for source category, 1.A.4.b.i, page 33
Cu	0.000076	mg/GJ	GB 2023, Table 3-4 emission factor for source category, 1.A.4.b.i, page 33
Ni	0.00051	mg/GJ	GB 2023, Table 3-4 emission factor for source category, 1.A.4.b.i, page 33
Se	0.011	mg/GJ	GB 2023, Table 3-4 emission factor for source category, 1.A.4.b.i, page 33
Zn	0.0015	mg/GJ	GB 2023, Table 3-4 emission factor for source category, 1.A.4.b.i, page 33
PCDD/ PCDF	1.5	ng l- TEQ/GJ	GB 2023, Table 3-4 emission factor for source category, 1.A.4.b.i, page 33
benzo(a) pyren	0.56	μg/GJ	GB 2023, Table 3-4 emission factor for source category, 1.A.4.b.i, page 33
benzo(b) fluoranthene	0.84	μg/GJ	GB 2023, Table 3-4 emission factor for source category, 1.A.4.b.i, page 33

Pollutant	Value	Unit	References	
benzo(k) fluoranthene	0.84	μg/GJ	GB 2023, Table 3-4 emission factor for source category, 1.A.4.b.i, page 33	
Indeno (1.2.3-cd) pyren	0.84	μg/GJ	GB 2023, Table 3-4 emission factor for source category, 1.A.4.b.i, page 33	

Table 84 Emission factors for liquid fuels for source category 1.A.4.bi - Residential: Stationary

Pollutant	Value	Unit	References
NOx	51	g/GJ	GB 2023, Table 3-5 emission factor for source category, 1.A.4.b.i, page 34
NMVOC	0.69	g/GJ	GB 2023, Table 3-5 emission factor for source category, 1.A.4.b.i, page 34
SOx	70	g/GJ	GB 2023, Table 3-5 emission factor for source category, 1.A.4.b.i, page 34
PM2.5	1.9	g/GJ	GB 2023, Table 3-5 emission factor for source category, 1.A.4.b.i, page 34
ВС	8.5	% PM2.5	GB 2023, Table 3-5 emission factor for source category, 1.A.4.b.i, page 34
PM10	1.9	g/GJ	GB 2023, Table 3-5 emission factor for source category, 1.A.4.b.i, page 34
TSP	1.9	g/GJ	GB 2023, Table 3-5 emission factor for source category, 1.A.4.b.i, page 34
СО	57	g/GJ	GB 2023, Table 3-5 emission factor for source category, 1.A.4.b.i, page 34
Pb	0.012	mg/GJ	GB 2023, Table 3-5 emission factor for source category, 1.A.4.b.i, page 34
Cd	0.001	mg/GJ	GB 2023, Table 3-5 emission factor for source category, 1.A.4.b.i, page 34
Hg	0.12	mg/GJ	GB 2023, Table 3-5 emission factor for source category, 1.A.4.b.i, page 34
As	0.002	mg/GJ	GB 2023, Table 3-5 emission factor for source category, 1.A.4.b.i, page 34
Cr	0.2	mg/GJ	GB 2023, Table 3-5 emission factor for source category, 1.A.4.b.i, page 34
Cu	0.13	mg/GJ	GB 2023, Table 3-5 emission factor for source category, 1.A.4.b.i, page 34
Ni	0.005	mg/GJ	GB 2023, Table 3-5 emission factor for source category, 1.A.4.b.i, page 34
Se	0.002	mg/GJ	GB 2023, Table 3-5 emission factor for source category, 1.A.4.b.i, page 34
Zn	0.42	mg/GJ	GB 2023, Table 3-5 emission factor for source category, 1.A.4.b.i, page 34
PCDD/PCDF	5.9	ng I- TEQ/GJ	GB 2023, Table 3-5 emission factor for source category, 1.A.4.b.i, page 34
benzo(a) pyren	80	μg/GJ	GB 2023, Table 3-5 emission factor for source category, 1.A.4.b.i, page 34
benzo(b) fluoranthene	40	μg/GJ	GB 2023, Table 3-5 emission factor for source category, 1.A.4.b.i, page 34

Pollutant	Value	Unit	References	
benzo(k) fluoranthene	70	μg/GJ	GB 2023, Table 3-5 emission factor for source category, 1.A.4.b.i, page 34	
Indeno (1.2.3-cd) pyren	160	μg/GJ	GB 2023, Table 3-5 emission factor for source category, 1.A.4.b.i, page 34	

4.6.7.2. Source-specific uncertainties and time-series consistency

The activity data uncertainty was estimated to be 10% (rating C. cf. chapter 1.7); the emission factor uncertainty for SO_2 was estimated to be 20% (rating A. cf. chapter 1.7), for SO_2 and NMVOC was estimated to be 40% (rating B) and for PM2.5 and NH_3 (125% rating C).

4.6.7.3. Source-specific QA/QC and verification

Standard QA/QC procedures were carried out for this source category. i.e. activity data were checked for plausibility and time-series consistency; emission data were checked for completeness and for consistency between the calculation files, NFR tables and the IIR.

4.6.7.4. Source-specific recalculations including changes made in response to the review process Recalculations were done for 2021 emissions due due to use of Emission factor from EMEP GB 2023.

4.6.7.5. Source-specific planned improvements including those in response to the review process

Furthermore, since this NFR is key sector for many pollutants, especially PM10 and PM2.5 which are critical pollutants in our country it is planned to use Tier 2 in the future. Data from National census which conducted in 2021, give no additional information on heating. But the available survey on type of heating in South-East region that was conducted in 2020 can provide information. In the frame of EU 4 Green project some improvement of inventory for combustion in households is carried out for the base year 2005. If data are made available for the NEIT, the improvement of the inventory will be carried out for the other years. Furthermore, It is considered to use Tier 2 method for this key category, during expert missions in the forthcoming IPA II project (2024-2026) within the activities for improvement of emission inventory.

4.6.8. Residential: Household and gardening (mobile) – NFR 1.A.4.bii

The emissions of this subsector come from mobile combustion (the combustion of fuel to power the equipment) used in residential areas: households and gardening land-based mobile machinery.

The species for which it is the more important are SO₂, NOx, CO₂, PM, CO and non-methane volatile organic compounds (NMVOCs). The emissions of CO₂ and SO₂ are predominantly fuel-based and independent of engine technology/type of equipment.

4.6.8.1. Methodological Issues

For the Tier 1 approach, emissions are estimated using the equation:

$$E_{pollutants} = \sum_{fueltype} FC_{fueltype} \times EF_{pollutants.fueltype}$$

Where:

Epollutant = the emission of the specified pollutant.

FCfuel type = the fuel consumption for each fuel (diesel. LPG, four-stroke gasoline and

two-stroke gasoline) for the source category

EFpollutant = the emission factor for this pollutant for each fuel type.

Activity data

Activity data for this source have been taken from the NFR tables reported in 2013. Regarding the source of activity data, in the IIR 2010 it was emphasized that all activity data were taken from the energy balances. Considering that the energy balances for the period 1990-2000 contain only data on total petroleum products, an expert judgment has been used for determination of gasoline consumed in this category.

Table 85 Activity data for source category 1.A.4.bii - Residential: Household and gardening (mobile)

Year	Gasoline consumption [TJ]
1990	48.62
1991	29.9
1992	56.1
1993	32.8
1994	32.8
1995	38.8
1996	38.4
1997	38.0
1998	38.2
1999	35.2
2000	34

Emission factors

Emission factors are taken from EB 2009. For the HM default emissions, factors from the guidebook have been used. With regards to other pollutants, EF is calculated as averages between EF for gasoline: two strike and gasoline: four strike engines. Emission factors used in calculation of emissions coming from this sector are presented in the following table.

Table 86 Emission factors for source category 1.A.4.bii - Residential: Household and gardening (mobile)

Pollutant	Value	Unit	References
NOx	4941	g/ton fuel	GB 2009 1A4bii Table 3-1 Tier 1 emission factors for off-road machinery. pg.19
NMVOC	129 899.5	g/ton fuel	GB 2009 1A4bii Table 3-1 Tier 1 emission factors for off-road machinery. pg.19
SOx	40.0	ppm	GB 2009 1A4bii Table 3-1 Tier 1 emission factors for off-road machinery. pg.19
NH3	3.5	g/ton fuel	GB 2009 1A4bii Table 3-1 Tier 1 emission factors for off-road machinery. pg.19
TSP	1959.5	g/ton fuel	GB 2009 1A4bii Table 3-1 Tier 1 emission factors for off-road machinery. pg.19
со	695 580.5	g/ton fuel	GB 2009 1A4bii Table 3-1 Tier 1 emission factors for off-road machinery. pg.19
Pb	0.00013	kg/l fuel	GB 2009 1A4bii Table 3-1 Tier 1 emission factors for off-road machinery. pg.19
Cd	0.01	mg/kg fuel	GB 2009 1A4bii Table 3-1 Tier 1 emission factors for off-road machinery. pg.19

Pollutant	Value	Unit	References			
Cr	0.05	mg/kg fuel	GB 2009 1A4bii Table 3-1 Tier 1 emission factors for off-road machinery. pg.19			
Cu	1.70	mg/kg fuel	GB 2009 1A4bii Table 3-1 Tier 1 emission factors for off-road machinery. pg.19			
Ni	0.07	mg/kg fuel	GB 2009 1A4bii Table 3-1 Tier 1 emission factors for off-road machinery. pg.19			
Se	0.01	mg/kg fuel	GB 2009 1A4bii Table 3-1 Tier 1 emission factors for off-road machinery. pg.19			
Zn	1	mg/kg fuel	GB 2009 1A4bii Table 3-1 Tier 1 emission factors for off-road machinery. pg.19			

4.6.8.2. Source-specific uncertainties and time-series consistency

No specific uncertainty analysis was done for this sector.

4.6.8.3. Source-specific QA/QC and verification

No specific QA/QC and verification were done in the sector.

4.6.8.4. Source-specific recalculations including changes made in response to the review process

During the 2016 Stage 3 review, the ERT pointed out that emissions from NFR 1.A.4.b.ii are currently estimated only for the period 1991-2000. The ERT recognized the challenge faced by the Party, and the difficulty to derive a full time series of emissions due to insufficient information available from the earlier inventories. During the review, the ERT provided suggestions on how to proceed (use of emissions calculated in 2000 for the upcoming years or use household number as surrogate data) to provide emission. The method for extrapolation using households as surogate data according to the formula Y0=Yt * (S0/St) was used to recalculate 2001-2022 emissions coming from this sector. The number of households from the last census conducted in 2021 was used for calculation of 2021 emissions. Estimated number of households was used for calculation of emissions for 2022.

4.6.8.5. Source-specific planned improvements including those in response to the review process No planed activities in this category.

4.6.9. Agriculture/Forestry/Fishing: Stationary – NFR 1.A.4.ci

Within the agriculture and forestry sector, mainly liquid fuels (Residual fuel oil. gasoil and LPG) are used, while solid biomass and coal (lignite) have minor importance.

4.6.9.1. Methodological Issues

Activity data

The activity data have been taken from the Statistical yearbooks – energy sector for the whole reporting period.

Table 87 Activity data for source category 1.A.4.ci - Agriculture/Forestry/Fishing: Stationary

Year	Gaseous fuel [TJ]	Lignite [TJ]	Lidued Fuels [TJ]	Biomass [TJ]
1990	NA	32.782	1302	NA
1991	NA	33.415	1545	NA
1992	NA	33.083	1322	NA
1993	NA	33.322	944	NA
1994	NA	33.338	890	NA
1995	NA	33.570	985	NA

Year	Gaseous fuel [TJ]	Lignite [TJ]	Lidued Fuels [TJ]	Biomass [TJ]
1996	NA	33.518	1125	NA
1997	NA	33.675	875	NA
1998	NA	0.022	829	NA
1999	NA	0.064	959	NA
2000	NA	1.905	1261	NA
2001	NA	0.375	998	NA
2002	NA	0.008	571	NA
2003	NA	1.362	457	14.072
2004	NA	1,844	1508	18.075
2005	NA	2.802	1003	41.373
2006	NA	0.730	793	37.781
2007	NA	0.953	516	35.200
2008	NA	2.495	541	51.112
2009	NA	0.124	351	47.688
2010	NA	0.124	363	47.048
2011	NA	0.124	323	51.119
2012	NA	0.091	349	55.681
2013	NA	36.393	230	56.675
2014	NA	36.393	230	56.675
2015	NA	35.572	251	56.679
2016	NA	32.555	248	51.220
2017	NA	25.765	207	55.943
2018	NA	21.761	211	57.621
2019	NA	86.49	221	57.909
2020	NA	33.427	186	65.589
2021	NA	96.525	126	60.709
2022	NA	62.297	123	58.985

The emission factors for all fuels have the same tables in Commercial/institutional tables 1.A.4.c.i.

4.6.9.2. Source-specific uncertainties and time-series consistency

The activity data uncertainty was estimated to be 10% (rating C. cf. chapter 1.7); the emission factor uncertainty for SO_2 was estimated to be 20% (rating A. cf. chapter 1.7), for SOx and NMVOC was estimated to be 40% (rating B) and for PM2.5 and NH₃ (125% rating C).

4.6.9.3. Source-specific QA/QC and verification

Standard QA/QC procedures were carried out for this source category. I.e. activity data were checked for plausibility and time-series consistency; emission data were checked for completeness and for consistency between the calculation files, NFR tables and the IIR.

4.6.9.4. Source-specific recalculations including changes made in response to the review process

Recalculations were done due to use of final fuel consumption data instead of preliminary consumption for 2021 and change of activity data for 2019 and 2020.

4.6.9.5. Source-specific planned improvements including those in response to the review process No planned improvements in this category.

4.6.10. Agriculture/Forestry/Fishing: Off-road vehicles and other machinery – NFR 1A4cii

4.6.10.1. Methodological Issues

Activity data

The activity data for the period have been taken from the energy balance within the Statistical yearbooks for the reporting period. Regarding the missing activity data, the number of off-road vehicles used in agriculture sector (taken form the chapter agriculture in the statistical yearbook) has been used as surrogate data for estimation of the fuel consumption.

Table 88 Activity data for source category 1.A.4.cii - Agriculture/Forestry/Fishing: Off-road vehicles and other machinery

Year	Diesel [TJ]	LPG [TJ]	Gasoline [TJ]			
1990	9558	NA	2441			
1991	12917	NA	1326			
1992	11276	NA	909			
1993	7651	NA	1046			
1994	7364	NA	842			
1995	8305	NA	772			
1996	9482	NA	884			
1997	6932	NA	1130			
1998	7346	NA	294			
1999	8149	NA	692			
2000	11598	NA	985			
2001	9574	NA	813			
2002	5325	NA	452			
2003	4260	NA	362			
2004	14066	NA	1195			
2005	1865	NA	374			
2006	711	NA	591			
2007	964	NA	325			
2008	1309	NA	323			
2009	2306	NA	336			
2010	3660	NA	351			
2011	3659	NA	394			
2012	3762	NA	379			

Year	Diesel [TJ]	LPG [TJ]	Gasoline [TJ]
2013	5710	NA	368
2014	6007	NA	371
2015	6223	NA	390
2016	6535	NA	397
2017	6537	NA	395
2018	6561	NA	395
2019	6707	NA	402
2020	6692	NA	394
2021	6688	NA	415
2022	3384	NA	416

Emission factors for calculation of emissions in this sector have been taken from the GB 2023 and are presented in the following table.

Table 89 Emission for source category 1.A.4.cii - Agriculture/Forestry/Fishing: Off-road vehicles and other machinery for diesel

Pollutant	Value	Unit	References				
NOx	34 457	g/t	GB 2023, Table 3-1 emission factor for source category, 1.A.4.c.ii-Agriculture, page 22-23				
NMVOC	3542	g/t	GB 2023, Table 3-1 emission factor for source category, 1.A.4.c.ii-Agriculture, page 23				
NH3	8	g/t	GB 2023, Table 3-1 emission factor for source category, 1.A.4.c.ii-Agriculture, page 22-23				
PM2.5	1913	g/t	GB 2023, Table 3-1 emission factor for source category, 1.A.4.c.ii-Agriculture, page 22-23				
PM10	1913	g/t	GB 2023, Table 3-1 emission factor for source category, 1.A.4.c.ii-Agriculture, page 22-23				
TSP	1913	g/t	GB 2023, Table 3-1 emission factor for source category, 1.A.4.c.ii-Agriculture, page 22-23				
СО	11 469	g/t	GB 2023, Table 3-1 emission factor for source category, 1.A.4.c.ii-Agriculture, page 22-23				
Cd	0.01	mg/kg	GB 2023, Table 3-1 emission factor for source category, 1.A.4.c.ii-Agriculture, page 22-23				
Cr	0.05	mg/kg	GB 2023, Table 3-1 emission factor for source category, 1.A.4.c.ii-Agriculture, page 22-23				
Cu	1.70	mg/kg	GB 2023, Table 3-1 emission factor for source category, 1.A.4.c.ii-Agriculture, page 22-23				
Ni	0.07	mg/kg	GB 2023, Table 3-1 emission factor for source category, 1.A.4.c.ii-Agriculture, page 22-23				
Zn	1	mg/GJ	GB 2023, Table 3-1 emission factor for source category, 1.A.4.c.ii-Agriculture, page 22-23				
benzo(a) pyren	30	μg/GJ	GB 2023, Table 3-1 emission factor for source category, 1.A.4.c.ii-Agriculture, page 22-23				

Pollutant	Value	Unit	References
benzo(b) fluoranthene	50	μg/GJ	GB 2023, Table 3-1 emission factor for source category, 1.A.4.c.ii-Agriculture, page 22-23

Table 90 Emission factors for LPG source category 1.A.4.cii - Agriculture/Forestry/Fishing: Off-road vehicles and other machinery

Pollutant	Value	Unit	References
NOx	28 571	g/t	GB 2023, Table 3-1 emission factor for source category, 1.A.4.c.ii-Agriculture, page 23
NMVOC	6720	g/t	GB 2023, Table 3-1 emission factor for source category, 1.A.4.c.ii-Agriculture, page 23
PM2.5	225	g/t	GB 2023, Table 3-1 emission factor for source category, 1.A.4.c.ii-Agriculture, page 23
PM10	225	g/t	GB 2023, Table 3-1 emission factor for source category, 1.A.4.c.ii-Agriculture, page 23
TSP	225	g/t	GB 2023, Table 3-1 emission factor for source category, 1.A.4.c.ii-Agriculture, page 23
со	4823	g/t	GB 2023, Table 3-1 emission factor for source category, 1.A.4.c.ii-Agriculture, page 23

Table 91 Emission factors for gasoline for source category 1.A.4.cii - Agriculture/Forestry/Fishing: Off-road vehicles and other machinery

Pollutant	Value	Unit	References
NOx	7117	g/t	GB 2023, Table 3-1 emission factor for source category, 1.A.4.c.ii-Agriculture, page 24
NMVOC	18 893	g/t	GB 2023, Table 3-1 emission factor for source category, 1.A.4.c.ii-Agriculture, page 24
PM2.5	157	g/t	GB 2023, Table 3-1 emission factor for source category, 1.A.4.c.ii-Agriculture, page 24
PM10	157	g/t	GB 2023, Table 3-1 emission factor for source category, 1.A.4.c.ii-Agriculture, page 24
TSP	157	g/t	GB 2023, Table 3-1 emission factor for source category, 1.A.4.c.ii-Agriculture, page 24
СО	770 368	g/t	GB 2023, Table 3-1 emission factor for source category, 1.A.4.c.ii-Agriculture, page 24
Cd	0.01	mg/kg	GB 2023, Table 3-1 emission factor for source category, 1.A.4.c.ii-Agriculture, page 24
Cr	0.05	mg/kg	GB 2023, Table 3-1 emission factor for source category, 1.A.4.c.ii-Agriculture, page 24
Cu	1.70	mg/kg	GB 2023, Table 3-1 emission factor for source category, 1.A.4.c.ii-Agriculture, page 24
Ni	0.07	mg/kg	GB 2023, Table 3-1 emission factor for source category, 1.A.4.c.ii-Agriculture, page 24
Zn	1	mg/GJ	GB 2023, Table 3-1 emission factor for source category, 1.A.4.c.ii-Agriculture, page 24
benzo(a) pyren	40	μg/GJ	GB 2023, Table 3-1 emission factor for source category, 1.A.4.c.ii-Agriculture, page 24
benzo(b) fluoranthene	40	μg/GJ	GB 2023, Table 3-1 emission factor for source category, 1.A.4.c.ii-Agriculture, page 24

4.6.10.2. Source-specific uncertainties and time-series consistency

The activity data uncertainty was estimated to be 10% (rating C. cf. chapter 1.7); the emission factor uncertainty for SO_2 was estimated to be 20% (rating A. cf. chapter 1.7), for SO_2 and NMVOC was estimated to be 40% (rating B) and for PM2.5 and NH_3 (125% rating C).

4.6.10.3. Source-specific QA/QC and verification

Standard QA/QC procedures were carried out for this source category. i.e. activity data was checked for plausibility and time-series consistency; emission data was checked for completeness and for consistency between the calculation files, NFR tables and the IIR.

4.6.10.4. Source-specific recalculations including changes made in response to the review process

Recalculations was performed in this category, only for NOx due to the change of EF for LPG. For other parameters emission factors in EMEP GB 2023 are same with EMEP GB 2019.

4.6.10.5. Source-specific planned improvements including those in response to the review process No planned improvements.

4.6.11. Agriculture/Forestry/Fishing: Off-road vehicles and other machinery – NFR 1.A.4.ciii

According to ERT recommends the Party was asked to include an explanation in the IIR on why emissions have not been estimated, we include the following explanation: For performing activity - fishing on natural and artificial lakes in our country are used boats equipped with outboard two-stroke and four-stroke engines with power of 4-10 KW. 30-40 boats are used in Lake Ohrid. Their utilization depends on the workload at different times of the year, which makes it difficult to determine fuel consumption. Therefore, these emissions are not estimated.

4.7. Fugitive emission from fuels- NFR 1 B

Fugitive emission arises from coal mining, production, distribution, storage, and distribution of oil products.

4.7.1. Coal mining and handling – NFR 1.B.1.a

4.7.1.1. Methodological issues

This is one of subcategories for which Tier 2 method was used.

$$E_{pollutants} = \sum_{tehnologies} AR_{production.tehnology} \times EF_{tehnology.pollutant}$$

where:

 $E_{pollutant}$ = the emission of the specified pollutant.

 $AR_{\text{fuelconsumption}}$ = the production rate the source category for specific technology.

EF_{pollutant} = the emission factor for this technology and this pollutant

Activity data

Data on coal mined has been taken from the Statistical Yearbook of the Republic of North Macedonia —chapter on Industrial production for the whole reporting period.

Table 92 Activity data for source category 1.B.1.a - Fugitive emission from solid fuels: Coal mining and handling

Year	Coal mined[Mg]	Year	Coal mined[Mg]	Year	Coal mined[Mg]
1990	6 643 409	2001	8 142 082	2012	7 309 546
1991	6 978 171	2002	7 571 202	2013	6 633 560
1992	6 472 920	2003	7 271 202	2014	6 681 752
1993	6 917 774	2004	7 296 136	2015	5 927 749
1994	6 859 762	2005	6 882 862	2016	5 101 758
1995	7 249 237	2006	6 653 474	2017	5 056 918
1996	7 145 667	2007	6 569 220	2018	4 994 843
1997	7 442 876	2008	7 669 103	2019	5 066 083
1998	8 144 653	2009	7 395 915	2020	4 532 745
1999	7 277 623	2010	6 583 074	2021	4 118 936
2000	7 513 998	2011	7 902 084	2022	5 079 495

In this category calculations were done by use of Tier 2 methodology starting from 2015 since all coal mines are categorized as open mines.

Table 93 Emission factors for 1.B.1.a - Fugitive emission from solid fuels: Coal mining and handling

Pollutant	Value	Unit	References
NMVOC	0.2	kg/Mg	GB 2023 Table 3-2 Tier 2 emission factors for source category 1.B.1.a Coal mining and handling. Open cast mining. page 10
PM10	0.039	kg/Mg	GB 2023 Table 3-2 Tier 2 emission factors for source category 1.B.1.a Coal mining and handling. Open cast mining. page 10
PM2.5	0.006	kg/Mg	GB 2023 Table 3-2 Tier 2 emission factors for source category 1.B.1.a Coal mining and handling. Open cast mining. page 10
TSP	0.082	kg/Mg	GB 2023 Table 3-2 Tier 2 emission factors for source category 1.B.1.a Coal mining and handling. Open cast mining. page 10

4.7.1.2. Source-specific uncertainties and time-series consistency

The activity data uncertainty was estimated to be 10%; the emission factor uncertainty for NOx was estimated to be 20% (rating A. cf. chapter 1.7) and 200% for PM2.5, (rating D).

4.7.1.3. Source-specific QA/QC and verification

Standard QA/QC procedures were carried out for this source category. I.e. activity data was checked for plausibility and time-series consistency; emission data was checked for completeness and for consistency between the calculation files, NFR tables and the IIR.

4.7.1.4. Source-specific recalculations including changes made in response to the review process No recalculations were performed in this category.

4.7.1.5. Source-specific planned improvements including those in response to the review process No further improvements are planned in this category.

4.7.2. Fugitive emissions oil: Refining/storage -NFR 1.B.2.aiv

Emissions of NMVOCs to the atmosphere occur in nearly every element of the oil products distribution chain. Most emissions occur due to the storage and handling of gasoline, because of the much higher volatility compared to other fuels such as gasoil, kerosene etc.

4.7.2.1. Methodological issues

The Tier 1 approach for the refining industry uses the general equation:

$$E_{pollutant} = \sum AR_{production} \times EF_{pollutnat}$$

This equation is applied at national level, using the total refined oil production as production statistics. It is also possible to use the crude oil throughput as production statistics.

Activity data

The activity data on crude oil input are taken from the energy balance within the Statistical Yearbook of the Republic of North Macedonia for the whole reporting period and are presented in the following table. Starting from 2015 onwards no crude oil input was reported. Therefore, emissions in this category did not occur.

Table 94 Activity data for source category 1.B.2.aiv - Fugitive emissions oil: Refining/storage

Year	Crude oil input [Mg]	Year	Crude oil input [Mg]	Year	Crude oil input [Mg]
1990	1 216 491	2001	1 012 872	2012	259 606
1991	964 033	2002	648 137	2013	59 676
1992	566 701	2003	78 749	2014	7 274
1993	1 018 201	2004	975 262	2015	NO
1994	143 148	2005	946 747	2016	NO
1995	119 437	2006	1 067 096	2017	NO
1996	696 341	2007	1 050 007	2018	NO
1997	379 759	2008	1 061 736	2019	NO
1998	754 775	2009	972 532	2020	NO
1999	765 412	2010	853 000	2021	NO
2000	1 043 104	2011	705 144	2022	NO

Emission factors

Emission factors for emission estimations in this sector are presented in the following table and are directly taken from GB 2023.

Table 95 Emission factors for source category 1.B.2.aiv - Fugitive emissions oil: Refining/storage

Pollutant	Value	Unit			References
NOx	0.24	kg/Mg input	crude	oil	GB 2023, Table 3-1 emission factor for source category, 1.B.2.a.iv, page 14
NMVOC	0.2	kg/Mg input	crude	oil	GB 2023, Table 3-1 emission factor for source category, 1.B.2.a.iv, page 14
SOx	0.62	kg/Mg input	crude	oil	GB 2023, Table 3-1 emission factor for source category, 1.B.2.a.iv, page 14

Pollutant	Value	Unit			References
NH ₃	0.0011	kg/Mg input	crude	oil	GB 2023, Table 3-1 emission factor for source category, 1.B.2.a.iv, page 14
PM2.5	0.0043	kg/Mg input	crude	oil	GB 2023, Table 3-1 emission factor for source category, 1.B.2.a.iv, page 14
PM10	0.0099	kg/Mg input	crude	oil	GB 2023, Table 3-1 emission factor for source category, 1.B.2.a.iv, page 14
TSP	0.016	kg/Mg input	crude	oil	GB 2023, Table 3-1 emission factor for source category, 1.B.2.a.iv, page 14
со	0.09	kg/Mg input	crude	oil	GB 2023, Table 3-1 emission factor for source category, 1.B.2.a.iv, page 14
Pb	0.0051	g/MG input	crude	oil	GB 2023, Table 3-1 emission factor for source category, 1.B.2.a.iv, page 14
Cd	0.0051	g/MG input	crude	oil	GB 2023, Table 3-1 emission factor for source category, 1.B.2.a.iv, page 14
Hg	0.0051	g/MG input	crude	oil	GB 2023, Table 3-1 emission factor for source category, 1.B.2.a.iv, page 14
As	0.0051	g/MG input	crude	oil	GB 2023, Table 3-1 emission factor for source category, 1.B.2.a.iv, page 14
Cr	0.0051	g/MG input	crude	oil	GB 2023, Table 3-1 emission factor for source category, 1.B.2.a.iv, page 14
Cu	0.0051	g/MG input	crude	oil	GB 2023, Table 3-1 emission factor for source category, 1.B.2.a.iv, page 14
Ni	0.0051	g/MG input	crude	oil	GB 2023, Table 3-1 emission factor for source category, 1.B.2.a.iv, page 14
Se	0.0051	g/MG input	crude	oil	GB 2023, Table 3-1 emission factor for source category, 1.B.2.a.iv, page 14
Zn	0.0051	g/MG input	crude	oil	GB 2023, Table 3-1 emission factor for source category, 1.B.2.a.iv, page 14
PCDD/ PCDF	0.0057	μg/Mg input	crude	oil	GB 2023, Table 3-1 emission factor for source category, 1.B.2.a.iv, page 14

4.7.2.2. Source-specific uncertainties and time-series consistency

The activity data uncertainty was estimated to be 10%; the emission factor uncertainty for NMVOC and SOx was estimated to be 20% (rating A. cf. chapter 1.7). and 40% for NO_x and NH_3 (rating B). and 200% for EF uncertainty for PM2.5 (rating D).

4.7.2.3. Source-specific QA/QC and verification

No QA/QC procedure is performed due to the fact the activity is not occurring.

4.7.2.4. Source-specific recalculations including changes made in response to the review process No recalculations were done in this sector.

4.7.2.5. Source-specific planned improvements including those in response to the review process No planned improvements in this category.

4.7.3. Distribution of oil products - NFR 1.B.2.a.v

This chapter is dealing with the distribution of oil products, in particular (but not limited to) gasoline distribution.

4.7.3.1. Methodological issues

The Tier 1 approach for process emissions from combustion uses the general equation:

 $E_{pollutant} = AR_{production} \times EF_{pollutant}$ where

E_{pollutant} = the emission of certain pollutant

AR_{production} = activity rate by fuel gasoline sold

EF_{pollutant} = emission factor for the selected pollutant.

Activity data

The oil products considered in this source category are as follows: The activity data regarding distributed oil products are calculated as the difference between produced and imported products, reduced by the quantity of exported oil products. Activity data for the produced oil products were taken from the publication industry in the Republic of North Macedonia for the period 2005-2015 [27] and the chapter for industry within the Statistical yearbooks of the Republic of North Macedonia for the previous period [21]. Activity data on the imported and exported oil products are taken from External trade chapter, within the Statistical yearbooks of the Republic of North Macedonia for the whole reporting period. The quantity of distributed oil is presented in the following table.

Table 96 Activity data for source category 1.B.2.a.v - Distribution of oil products

Year	Distributed oil (Mg)	Year	Distributed oil (Mg)	Year	Distributed oil (Mg)
1990	592 133	2001	959 035	2012	572 365
1991	457 295	2002	178 107	2013	626 447
1992	278 185	2003	338 459	2014	598 267
1993	597 143	2004	383 553	2015	675 630
1994	117 255	2005	402 385	2016	745 722
1995	828 450	2006	409 568	2017	858 093
1996	334 711	2007	454 633	2018	872 279
1997	459 252	2008	456 165	2019	942 879
1998	484 508	2009	447 263	2020	832 130
1999	514 251	2010	516 450	2021	923 326
2000	394 487	2011	566 686	2022	1 021 417

The emission factor from GB 2023 has been used for calculations. The EF differs from the EF presented un GB 2019.

Table 97 Emission factors for source category 1.B.2.a.v - Distribution of oil products for NMVOC

Pollutant	Value	Unit	References
NMVOC	4.5	kg/Mg oil	GB 2023 Table 3-1 emission factor for source category 1.B.2.a.v page 12

4.7.3.2. Source-specific uncertainties and time-series consistency

See chapter 2.7.1

4.7.3.3. Source-specific QA/QC and verification

Comparison of data reported under this category with data reported under 1.B.a.iv.

4.7.3.4. Source-specific recalculations including changes made in response to the review process

Realculations were done due change of EF for NMVOC. Emission factor from 2023 EMEP/EEA Guidebook was used.

4.7.3.5. Source-specific planned improvements including those in response to the review process

No planned improvements in this category.

4.7.4. Venting and flaring – 1.B.2.c

4.7.4.1. Methodological issues

The Tier 1 approach for process emissions from combustion uses the general equation:

 $E_{\text{pollutant}} = AR_{\text{production}} \times EF_{\text{pollutant}}$

This equation is applied at national level, using annual totals for venting and flaring.

Activity data

The activity data for this source category for the years 2004, 2008 and 2010, has been taken from the previous informative reports, which were originally obtained from the refinery. For the period 1990-1999, the activity data were taken from the reported data in 2013 reporting round (there is no presented source where this data is coming from). For the other years, a gap filling method has been implemented by using data on quantity of crude oil processed as surrogate data. The consumption of refinery feed has been requested from the refinery, but the data was not reported. No production process was carried out from 2015 onwards so the emissions in this category are not occurring.

Table 98 Activity data for source category 1.B.2.c - Venting and flaring

Year	Refinery feed [TJ]	Year	Refinery feed [TJ]	Year	Refinery feed [TJ]
1990	325	2001	201	2012	52
1991	186	2002	129	2013	12
1992	109	2003	156	2014	1
1993	196	2004	201	2015	NO
1994	28	2005	188	2016	NO
1995	23	2006	212	2017	NO
1996	134	2007	209	2018	NO
1997	73	2008	211	2019	NO
1998	146	2009	193	2020	NO
1999	148	2010	165	2021	NO
2000	188	2011	140	2022	NO

Emission factors

Emission factors are taken from the IIR 2010 expressed in TJ.

Table 99 Emission factors for source category 1B2c Venting and flaring

Pollutant	Value	Unit	References		
NOx	100	g/GJ refinery feed	IIR 2010 Table 72, page 74		
NMVOC	5	g/GJ refinery feed	IIR 2010 Table 72, page 74		
SOx	15	g/GJ refinery feed	IIR 2010 Table 72, page 74		
СО	24	g/GJ refinery feed	IIR 2010 Table 72, page 74		

4.7.4.2. Source-specific uncertainties and time-series consistency

The activity data uncertainty was estimated to be 20%; the emission factor uncertainty for NMVOC was estimated to be 20% (rating A. cf. chapter 1.7) and 40% for NOx (rating B).

4.7.4.3. Source-specific QA/QC and verification

Standard QA/QC procedures were carried out for this source category. i.e. activity data were checked for plausibility and time-series consistency; emission data were checked for completeness and for consistency between the calculation files, NFR tables and the IIR. Data were crosschecked with activity data from the category 1.B.a.iv.

4.7.4.4. Source-specific recalculations including changes made in response to the review process No recalculations were performed in this category.

4.7.4.5. Source-specific planned improvements including those in response to the review process No planned improvements in this category, since the activity does not accure anymore

4.7.5. Other fugitive emissions from energy production – 1.B.2.d

Emissions for NH_3 , Hg and As were calculated for the period 1998-2022, where data on geothermal energy consumption were available.

Methodological issues

The Tier 1 approach for process emissions from combustion uses the general equation:

 $E_{\text{pollutant}} = AR_{\text{production}} \times EF_{\text{pollutant}}$

This equation is applied at the national level, using annual national statistics on the extraction of geothermal energy from the earth.

The Tier 1 emission factors assume an averaged or typical technology and abatement implementation in the country and integrate all different sub-processes within the geothermal energy extraction process.

Activity data

The activity data for this source category for the period 1998-2016 expressed in m^3 are taken from the Energy balance. Data are converted in Gcal which are expressed in GWh by use of conversion factor taken from the Energy balance for Republic of North Macedonia, where it is stated that 1 Gcal = 1.16 *10 $^{-3}$ GWh.

Table 100 Activity data for source category 1.B.2.d - Other fugitive emissions from energy production

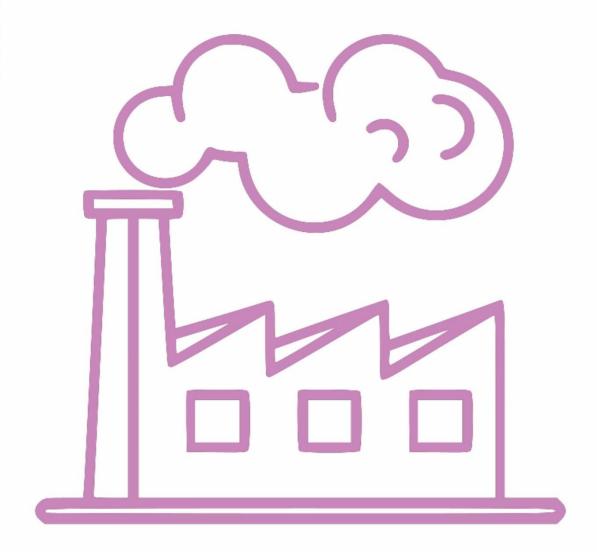
Year	Geothermal energy [MWh electricity produced]	Year	Geothermal energy [MWh electricity produced]	Year	Geothermal energy [MWh electricity produced]
1990	NE	2001	269 512	2012	122 982
1991	NE	2002	151 114	2013	98 741
1992	NE	2003	153 373	2014	84 884
1993	NE	2004	136 983	2015	78 217
1994	NE	2005	115 561	2016	75 999
1995	NE	2006	116 846	2017	70 577
1996	NE	2007	124 244	2018	69 589
1997	NE	2008	115 379	2019	64 985
1998	217 375	2009	141 326	2020	61 962
1999	178 608	2010	141 326	2021	61 578
2000	181 751	2011	142 551	2022	58 159

Emission factors are taken from the GB 2023, expressed in MWh electricity produced.

Table 101 Emission factors for source category 1.B.2.d -Other fugitive emissions from energy

Pollutant	Value	Unit	References
NH ₃	2100	g/MWh electricity produced	GB 2023 Table 3-4 emission factor for source category 1.B.2.d page 5
Hg	0.44	g/MWh electricity produced	GB 2023 Table 3-4 emission factor for source category 1.B.2.d page 5
As	0.025	g/MWh electricity produced	GB 2023 Table 3-4 emission factor for source category 1.B.2.d page 5

4.7.5.1. Source-specific uncertainties and time-series consistency


No specific uncertainties were calculated for this category.

4.7.5.2. Source-specific QA/QC and verification

Standard QA/QC procedures were carried out for this source category. I.e. activity data was checked for plausibility and time-series consistency; emission data was checked for completeness and for consistency between the calculation files, NFR tables and the IIR.

4.7.5.3. Source-specific recalculations including changes made in response to the review process No recalculations were done in this sector.

4.7.5.4. Source-specific planned improvements including those in response to the review process No planned improvements in this category.

5. INDUSTRIAL PROCESSES AND PRODUCT USE (NFR SECTOR 2)

5.1. Sector overview

This chapter includes information on the estimation (calculation) of the emissions of NEC gases, CO, particle matter (PM), heavy metals (HM) and persistent organic pollutants (POPs) as well as activity data and their references and emission factors reported under NFR category Industrial Processes taken from EMEP Guidebooks 2023 for the period from 1990-2022 with exeption of those categories where due to limitation of activity data, emission factors from older version of the Guidebook are used.

This category comprises emissions from the following subcategories: Mineral Products, Chemical Industry, Metal Production and Other products and solvents used.

Only process related emissions are considered in this Sector. Emissions due to fuel combustion in manufacturing industries are allocated in NFR Category 1.A.2 Fuel Combustion – Manufacturing Industries and Construction.

Some categories in this sector like those categorized as chemical production are not occurring (NO) in North Macedonia, as there is no such production. For some categories notation keys like not estimated (NE) or included elsewhere (IE) have been used.

5.2. General description

Completeness

Table 102 NFR categories covered in Industrial processes sector for 2022

NFR sector	Completeness
2.A.1 Cement production	V
2.A.2 Lime production	NO
2.A.3 Glass production	V
2.A.5.a Quarrying and mining of minerals other than coal	V
2.A.5.b Construction and demolition	V
2.A.5.c Storage. handling and transport of mineral products	٧
2.B.1 Ammonia production	NO
2.B.2 Nitric acid production	NO
2.B.3 Adipic acid production	NO
2.B.4 Carbide production	NO
2.B.10.a Chemical industry: Other	٧
2. B.10.b Storage. handling and transport of chemical products	IE
2.B.7 Soda ash production and use	NE
2.C.1 Iron and steel production	٧
2.C.2 Ferroalloys production	٧
2.C.3 Aluminum production	NE
2.C.4 Magnesium production	NO

NFR sector	Completeness
2.C.5 Lead production	V
2.C.6 Zinc production	NO
2.C.7.a Copper production	NE
2.C.7.b Nickel production	NO
2.C.7.c Other metal production	٧
2.C.7.d Storage. handling and transport of metal products	IE
2.D.3.a Domestic solvent use including fungicides	٧
2.D.3.b Road paving with asphalt	٧
2.D.3.c Asphalt roofing	٧
2.D.3.d Coating applications	٧
2.D.3.e Degreasing	٧
2.D.3.f Dry cleaning	٧
2.D.3.g Chemical products	٧
2.D.3.h Printing	٧
2.G Other product use and 2.D.3.i Other solvent use	٧
2.H.1 Pulp and paper industry	NO
2.H.2 Food and beverage production industry	٧
2.H.2 Other industrial processes	NE
2.I Wood processing	٧
2.J Production of POPs	NO
2.K Consumption of POPs and HM	٧
2.L Other production, consumption, storage, transportation or handling of bulk products	NE

Methodology

The Tier 1 approach for process emissions from production uses the general equation:

 $E_{pollutant} = AR_{production} \times EF_{pollutant}$

where:

E_{pollutant} = the emission of certain pollutant

AR_{production} = the activity rate (data) for the production

EF_{pollutant} = emission factor for the selected pollutant.

5.3. Mineral products – NFR 2.A

5.3.1. Cement production – 2.A.1

In the Republic of North Macedonia there is only one installation (factory) for cement production "Cementarnica USJE AD Skopje". In this installation there are 2 (two) rotary kilns (furnace 3 and 4) where abatement (fabric filters) is used since 2001 (for furnace 3) and since 2003 (for furnace 4). For

these reasons for the period 2004-2015 we have made recalculation of the of PM2.5 emissions, PM10, TSP and BC, described below.

5.3.1.1. Methodological issues

The Tier 1 approach for process emissions from cement uses the general equation:

$$E_{pollutant} = \sum AR_{production} \times EF_{pollutnat}$$

where:

 $E_{pollutant}$ = the emission of a pollutant (kg),

 $AR_{production}$ = the annual production of clinker (in Mg),

EF_{pollutant} = is the emission factor of the relevant pollutant (in -g pollutant/Mg clinker produced)

Activity Data

The activity data for the whole reporting period was received from the operator itself.

Table 103 Activity data for source category 2.A.1 - Cement production

Year	Clinker produced (t)	Year	Clinker produced (t)	Year	Clinker produced (t)
1990	491 900	2001	716 960	2012	645 480
1991	465 380	2002	739 490	2013	577 850
1992	396 500	2003	602 570	2014	518 200
1993	413 440	2004	643 260	2015	553 232
1994	375 910	2005	694 920	2016	739 810
1995	365 120	2006	801 300	2017	735 625
1996	396 020	2007	882 830	2018	748 287
1997	475 250	2008	843 770	2019	737 700
1998	346 870	2009	478 400	2020	770 599
1999	427 080	2010	588 980	2021	803 735
2000	614 160	2011	687 990	2022	673 837

During the stage 3 Review, the ERT notes a jump in the clinker produced in 2000 for 44% and a dip in 2009 for 43%. And the reason behind is that the Cement Factory has been working since 2000 with a new owner who had previously made several modernizations in the production. In 2009, the decline in production was due to the economic crisis and data from then on are gradually increasing.

Emission factors

For calculation (estimation) of emissions for PM2.5, PM10, TSP and BC for the period 1990-2003 emission factors were taken from GB 2023.

These emission factors are given in the table below:

Table 104 Emission factors for source category 2.A.1 cement production

Pollutant	Value	Unit	References
-----------	-------	------	------------

PM10	234	g/Mg clinker	GB 2023 2.A.1 Cement production. Table 3-1. pg. 10
PM2.5	130	g/Mg clinker	GB 2023 2.A.1 Cement production. Table 3-1. pg. 10
TSP	260	g/Mg clinker	GB 2023 2.A.1 Cement production. Table 3-1. pg. 10
ВС	3	%	GB 2023 2.A.1 Cement production. Table 3-1. pg. 10

For calculation (estimation) of emissions for PM2.5, PM10 and TSP for the period 2007-2022 the total emission TSP (measured with continuous monitoring) is taken into account: the emission factors from GB 2023 have been used (Tier 1, Table 102 above) as well as Tier 2, Table 103 (GB 2023) were the abatement efficiencies are considered (namely the proportion relation for calculation of abatement efficiencies for TSP, PM10 and PM2.5 is used for each particular year.

For the period 2004-2006 (when there was no continuous monitoring installed in the installation) the calculation of PM2.5, PM10 and TSP emissions are done by considering the mass of clinker produced and the abatement efficiency, approximately 92% for TSP, 75 % for PM10 and 68,5 % for PM2.5.

For this calculation, the following equation was used:

EF technology/abated = $(1-\eta(abatement)) \times EF$ technology/unabated

Table 105 Abatement efficiencies (η_{abatement}) for source category 2.A.1 Cement production

Abatement technology	Pollutant	Value	References
Additional fabric filters	particle > 10 μm	98%	GB 2023 Tier 2 2.A.1 Cement production. Table 3-2. pg. 12
on the oven stack; effective control of fugitive sources	10 μm > particle > 2.5 μm	80%	GB 2023 Tier 2 2.A.1 Cement production. Table 3-2. pg. 12
	2.5 μm > particle	73%	GB 2023 Tier 2 2.A.1 Cement production. Table 3-2. pg. 12

5.3.1.2. Source-specific uncertainties and time-series consistency

The activity data uncertainty was estimated to be 2%; the emission factor uncertainty was estimated to be 200% (rating D, cf. chapter 2.7), based on expert judgment.

There has been one cement plant operating over the whole time series. Emissions follow the changes production.

5.3.1.3. Source-specific QA/QC and verification

Standard QA/QC procedures are carried out for this source category, i.e. activity data are checked for plausibility and time-series consistency; emission data are checked for completeness and for consistency between the calculation files, NFR tables and the IIR.

5.3.1.4. Source-specific recalculations including changes made in response to the review process The changes in the abatement technology have also been considered. No recalculations were carried out in this category.

5.3.1.5. Source-specific planned improvements including those in response to the review process No recalculations are planned in future.

5.3.2. Lime production – NFR 2.A.2

5.3.2.1. Methodological issues

For estimation of emission from lime production Tier 1 method is used, where lime produced was taken as activity data.

Activity Data

The activity data for the period 1990–1999, originates from the Statistical Yearbook - Chapter industry, while activity data for the period 2000-2013, was taken from the International Mineral yearbook [30]. No data was available for 2008 and 2014. According to the MS expert comments, data on hydraulic lime can be considered. Therefore, available data for the period 2014-2022 from the Statistical publication for Industry in the Republic of North Macedonia [29] was used as activity data. For the period 2020-2022 there is no lime production because the installation for this type of production has gone bankrupt.

Table 106 Activity data for source category 2.A.2 - Lime production

Year	Lime produced (t)	Year	Lime produced (t)	Year	Lime produced (t)
1990	37 452	2001	500	2012	2 700
1991	29 194	2002	500	2013	2 700
1992	33 872	2003	500	2014	10 836
1993	24 904	2004	500	2015	8 003
1994	14 097	2005	15 009	2016	8 684
1995	12 538	2006	12 704	2017	1 399
1996	9 707	2007	7 517	2018	6 834
1997	4 344	2008	NE	2019	29 236
1998	964	2009	2 713	2020	NO
1999	4 264	2010	2 700	2021	NO
2000	1 000	2011	2 700	2022	NO

Emission factors

For the calculation (estimation) of emissions for PM2.5, PM10 and TSP for the period 1990-2020 emission factors were taken from GB 2023.

These emission factors are given in Table 105 below.

Table 107 Emission factors for source category 2.A.2 - Lime production

Pollutant	Value	Unit	References
PM10	3500	g/Mg lime	GB 2023 2.A.2 Lime production, Table 3-1, pg. 8
PM2.5	700	g/Mg lime	GB 2023 2.A.2 Lime production, Table 3-1, pg. 8
TSP	9000	g/Mg lime	GB 2023 2.A.2 Lime production, Table 3-1, pg. 8
ВС	0.46	% of PM2.5	GB 2023 2.A.2 Lime production, Table 3-1, pg. 8

5.3.2.2. Source-specific uncertainties and time-series consistency

The activity data uncertainty was estimated to be 5%; the emission factor uncertainty was estimated to be 200% (rating D), based on expert judgment.

5.3.2.3. Source-specific QA/QC and verification

Standard QA/QC procedures were carried out for this source category, i.e., activity data was checked for plausibility and time-series consistency; emission data was checked for completeness and for consistency between the calculation files, NFR tables and the IIR. Activity data was checked also in the MAKSTAT database [29].

- **5.3.2.4.** Source-specific recalculations including changes made in response to the review process No recalculations were carried out in this category.
- **5.3.2.5.** Source-specific planned improvements including those in response to the review process No planned improvements in this category.

5.3.3. Glass production – NFR 2.A.3

The glass production in North Macedonia was ongoing in the installation "Staklara" during the nineties. Currently, there are small installations in which glass is only processed, but not produced.

5.3.3.1. Methodological issues

Tier 2 method, has been implemented for estimation of emissions coming from this source category bearing in mind data that were available for flat glass and glass wool produced.

$$E_{pollutants} = \sum_{tehnologies} AR_{production, tehnology} \times EF_{production, tehnology}$$

where:

AR_{production}, tehnology = the production rate within the source category, using this specific technology,

*EF*_{pollutant} = the emission factor for this technology and this pollutant.

Activity Data for source category 2.A.3 - Flat glass production

The activity data for both flat glass production and glass wool production are presented below. The activity data for flat glass production for the period 1990-1992 are taken from the statistical yearbooks.

Table 108 Activity data for 2.A.3 - Flat glass production

Year	Flat glass produced [t]	Year	Flat glass produced [t]	Year	Flat glass produced [t]
1990	448	2001	NO	2012	NO
1991	32	2002	NO	2013	NO
1992	179	2003	NO	2014	NO
1993	NO	2004	NO	2015	NO
1994	NO	2005	NO	2016	NO
1995	NO	2006	NO	2017	NO
1996	NO	2007	NO	2018	NO
1997	NO	2008	NO	2019	NO
1998	NO	2009	NO	2020	NO
1999	NO	2010	NO	2021	NO

Year	Year Flat glass produced [t]		Flat glass produced [t]	Year	Flat glass produced [t]
2000	NO	2011	NO	2022	NO

For the estimation of emission parameters from 1990-1992, the used emission factors were taken from GB 2023. These emission factors are given in Table 109 below.

Table 109 Emission factors for source category 2.A.3 Flat glass production

Pollutant	Valu	e Unit	References
PM10	12	0 g/Mg glass	GB 2023 2.A.3 Glass production. Table 3-2. Flat glass production pg. 16
PM2.5	10	0 g/Mg glass	GB 2023 2.A.3 Glass production. Table 3-2. Flat glass production pg. 16
TSP	13	0 g/Mg glass	GB 2023 2.A.3 Glass production. Table 3-2. Flat glass production pg. 16
ВС	0.06	2 % of PM2.5	GB 2023 2.A.3 Glass production. Table 3-2. Flat glass production pg. 16
Pb	0.	4 g/Mg glass	GB 2023 2.A.3 Glass production. Table 3-2. Flat glass production pg. 16
Cd	0.06	8 g/Mg glass	GB 2023 2.A.3 Glass production. Table 3-2. Flat glass production pg. 16
Hg	0.00	g/Mg glass	GB 2023 2.A.3 Glass production. Table 3-2. Flat glass production pg. 16
As	0.0	8 g/Mg glass	GB 2023 2 A.3 Glass production. Table 3-2. Flat glass production pg. 16
Cr	0.0	8 g/Mg glass	GB 2023 2.A.3 Glass production. Table 3-2. Flat glass production pg. 16
Cu	0.00	7 g/Mg glass	GB 2023 2.A.3 Glass production. Table 3-2. Flat glass production pg. 16
Ni	0.7	4 g/Mg glass	GB 2023 2.A.3 Glass production. Table 3-2. Flat glass production pg. 16
Se	0.1	5 g/Mg glass	GB 2023 2.A.3 Glass production. Table 3-2. Flat glass production pg. 16
Zn	0.3	7 g/Mg glass	GB 2023 2.A.3 Glass production. Table 3-2. Flat glass production pg. 16

Activity Data for source category 2.A.3 - Glass wool production

The activity data for glass wool production was taken from Statistical yearbooks - chapter industry for the period 1990-1998.

Table 110 Activity data for source category 2.A.3 - Glass wool production

Year	Glass wool produced [t]	Year	Glass wool produced [t]	Year	Glass wool produced [t]
1990	2739	2001	NO	2012	NO
1991	1 176	2002	NO	2013	NO
1992	1828	2003	NO	2014	NO
1993	444	2004	NO	2015	NO
1994	1332	2005	NO	2016	NO
1995	3043	2006	NO	2017	NO
1996	1454	2007	NO	2018	NO
1997	961	2008	NO	2019	NO
1998	960	2009	NO	2020	NO
1999	NO	2010	NO	2021	NO
2000	NO	2011	NO	2022	NO

Emission factors

For the estimation of emission parameters for the period 1990-1998 coming from this source category, the used emission factors were taken from GB 2023.

These emission factors are given in Table 111 below.

Table 111 Emission factors for Glass wool production

Pollutant	Value	Unit	References
NMVOC	500	g/Mg glass	GB 20232.A.3 Glass production. Table 3-5. Glass wool production pg. 19
NH ₃	1400	g/Mg glass	GB 2023 2.A.3 Glass production. Table 3-5. Glass wool production pg. 19
PM2.5	520	g/Mg glass	GB 2023 2.A.3 Glass production. Table 3-5. Glass wool production pg. 19
PM10	590	g/Mg glass	GB 2023 2.A.3 Glass production. Table 3-5. Glass wool production pg. 19
TSP	670	g/Mg glass	GB 2023 2.A.3 Glass production. Table 3-5. Glass wool production pg. 19
ВС	2	% Of PM2.5	GB 2023 2.A.3 Glass production. Table 3-5. Glass wool production pg. 19

5.3.3.2. Source-specific uncertainties and time-series consistency

The activity data uncertainty was estimated to be 10%; the emission factor uncertainty was estimated to be 40% for NMVOC and NH₃ and 200% for PM2.5, based on expert judgment.

This time series ends in 1998, as the production of flat glass and glass wool ceased by that time.

5.3.3.3. Source-specific QA/QC and verification

Standard QA/QC procedures were carried out for this source category, i.e., activity data was checked for plausibility and time-series consistency; emission data was checked for completeness and for consistency between the calculation files, NFR tables and the IIR.

- **5.3.3.4.** Source-specific recalculations including changes made in response to the review process No recalculations were carried out in this category.
- **5.3.3.5.** Source-specific planned improvements including those in response to the review process No improvements are planned in this category.

5.3.4. Quarrying and mining of minerals other than coal – NFR 2.A.5.a

This subchapter elaborates quarrying and mining of minerals other than coal and it does not include emissions from the combustion of fuels in the plant or transport machinery.

5.3.4.1. Methodological issues

Tier 1 method is used for calculation of emissions in this sector. The quantities of different minerals (like marble, talk, silica, gypsum, etc.) were summarized for calculation of activity data per reporting year.

Activity Data

The activity data for mineral produced were taken from the Statistical yearbook for the period 1990-2005[22], while activity data for the period 2005-2006 [28] were taken from the statistical publication for industry. Data for period 2007-2022 are taken from MAKSTAT database [29].

Table 112 Emission factors for minerals produced for source category 2.A.5.a Quarrying and mining the minerals other than coal

Year	Mineral produced [t]	Year	Mineral produced [t)]	Year	Mineral produced [t)]
1990	6 117 811	2001	3 488 792	2012	7 039 649
1991	5 730 999	2002	2 855 005	2013	7 779 824
1992	5 299 552	2003	739 786	2014	7 218 423
1993	5 246 466	2004	347 795	2015	7 577 701
1994	4 817 372	2005	2 827 908	2016	8 311 381
1995	5 215 134	2006	4 605 478	2017	7 837 715
1996	5 233 110	2007	6 955 426	2018	7 867 030
1997	5 528 418	2008	7 095 376	2019	8 385 648
1998	5 158 798	2009	5 783 348	2020	7 783 002
1999	4 658 946	2010	6 845 344	2021	7 312 359
2000	4 917 560	2011	7 106 322	2022	6 853 157

For estimation of emissions for PM2.5, PM10 and TSP the used emission factors were taken from GB 2023. These emission factors are given in Table 113 below.

Table 113 Emission factors for minerals produced for 2.A.5.a source category - Quarrying and mining of minerals other than coal

Pollutant	Value	Unit	References
TSP	102	g/Mg mineral	GB 2023 2.A.5.a Quarrying and mining of minerals other than coal. Table 3-1. pg. 5
PM10	50	g/Mg mineral	GB 2023 2.A.5.a Quarrying and mining of minerals other than coal. Table 3-1. pg. 5
PM2.5	5.0	g/Mg mineral	GB 2023 2.A.5.a Quarrying and mining of minerals other than coal. Table 3-1. pg. 5

5.3.4.2. Source-specific uncertainties and time-series consistency

The activity data uncertainty was estimated to be 10%; the emission factor uncertainty was estimated to be 200% (rating D), based on expert judgment.

5.3.4.3. Source-specific QA/QC and verification

Standard QA/QC procedures were carried out for this source category, i.e., activity data was checked for plausibility and time-series consistency; emission data was checked for completeness and for consistency between the calculation files, NFR tables and the IIR.

5.3.4.4. Source-specific recalculations including changes made in response to the review process No recalculations were done in this category.

5.3.4.5. Source-specific planned improvements including those in response to the review process

According to the recommendation given during the stage 3 revisions, the reason behind the deep in the quarrying and mining of minerals other than coal in 2003 for 74% and a jump in 2005 by 8 times (713%) is due to no mining activities in 2004. Furthermore, possibilities to use Tier 2 methodology in this category were investigated; however, there are no detail activity data like Average area of the hole/blast (m²) Average height of the hole/blast (m), Material density, Volume of production (m³) to be able to proceed with Tier 2 in this category. These types of required data will be included in the

National environmental information system for gathering emission data which should be operational in 2025. After these data are gathered it will be possible to change the methodology of calculation.

5.3.5. Construction and demolition – NFR 2.A.5.b.

This subchapter elaborates emissions from construction and demolition works. This activity mainly results in emissions of particulates, but other pollutants may also be emitted, depending on the materials used in the work. At construction sites, construction materials are used to construct items including buildings and infrastructure. At demolition sites, a building, infrastructure, or other constructions are torn down, resulting in a lot of rubbish.

5.3.5.1. Methodological issues

Tier 1 method has been applied for estimation of emissions coming from this source category where the activity data refer to floor area in m² of the building constructed or demolished.

Activity Data

Activity data on constructed (completed and unfinished) dwellings and demolished residential dwellings are taken from Statistical yearbooks - Chapter Construction for the period 1996-2022. There is only data for area in m² of constructed dwellings, as well as number of demolished dwellings. The area of demolished dwellings is calculated when the number of demolished dwellings per year is multiplied with an average dwelling area of 65 m². The activity data and EF are presented in the following tables:

Table 114 Activity data for constructed (completed and unfinished) individual dwellings for source category 2.A.5.b - Construction and demolition

Year	m²/year	Year	m²/year	Year	m²/year
1990	1241459	2001	908906	2012	934773
1991	960298	2002	771750	2013	887697
1992	1012393	2003	842519	2014	798891
1993	876103	2004	962874	2015	752207
1994	827450	2005	899876	2016	943400
1995	848494	2006	958738	2017	1130883
1996	456408	2007	852971	2018	1109077
1997	394471	2008	809606	2019	1028448
1998	311088	2009	824945	2020	1096693
1999	874951	2010	902234	2021	1814779
2000	841820	2011	944630	2022	1696994

Emission factors

Emission factors for the particulates PM2.5, PM10 and TSP are taken from GB 2023. These emission factors are given in Table 115 below.

Table 115 Emission factors for source category 2.A.5.b - Construction and demolition-Construction of apartment buildings

Pollutant	Value	Unit	References
TSP	1	kg/m²/year	GB 2023 2.A.5.b Construction and demolition. Table 3-2. pg. 7

PM10	0.3	kg/m²/year	GB 2023 2.A.5.b Construction and demolition. Table 3-2. pg. 7
PM2.5	0.03	kg/m²/year	GB 2023 2.A.5.b Construction and demolition. Table 3-2. pg. 7

Table 116 Activity data for constructed public dwellings for source category 2.A.5.b - Construction and demolition

Year	m²/year	Year	m²/year	Year	m²/year
1990	NE	2001	48836	2012	33000
1991	NE	2002	100144	2013	37190
1992	NE	2003	110294	2014	4998
1993	NE	2004	58699	2015	8612
1994	NE	2005	61890	2016	6443
1995	NE	2006	57451	2017	8117
1996	471555	2007	39414	2018	19169
1997	449131	2008	7485	2019	18337
1998	482850	2009	33131	2020	32473
1999	65348	2010	17832	2021	34054
2000	56048	2011	14260	2022	19843

Emission factors for the particulates PM2.5, PM10 and TSP are taken from GB 2023. These emission factors are given in Table 117 below.

Table 117 Emission factors for source category 2.A.5.b - Construction and demolition-Non-residential contruction

Pollutant	Value	Unit	References
TSP	3.3	kg/m²/year	GB 2023 2.A.5.b Construction and demolition. Table 3-3. pg. 7/8
PM10	1	kg/m²/year	GB 2023 2.A.5.b Construction and demolition. Table 3-3. pg. 7/8
PM2.5	0.1	kg/m²/year	GB 2023 2.A.5.b Construction and demolition. Table 3-3. pg. 7/8

5.3.5.2. Source-specific uncertainties and time-series consistency

The activity data uncertainty was estimated to be 10%; the emission factor uncertainty was estimated to be 200% (rating D), based on expert judgment.

5.3.5.3. Source-specific QA/QC and verification

Standard QA/QC procedures were carried out for this source category, i.e., activity data were checked for plausibility and time-series consistency; emission data was checked for completeness and for consistency between the calculation files, NFR tables and the IIR.

5.3.5.4. Source-specific recalculations including changes made in response to the review process Recalculations were done in this category due to using updated activity data on constructed (completed and unfinished) dwellings and demolished residential dwellings taken from Statistical yearbooks - Chapter Construction for the period 1996-2022.

5.3.5.5. Source-specific planned improvements including those in response to the review process

Currently the emissions from the source category construction and demolition refer only to the area of constructed and demolished dwellings and are underestimated. It is planned for the reporting in future to gather activity data for other types of constructed and demolished buildings. This issue will be further discussed with SSO.

5.3.6. Storage, handling, and transport of mineral products – NFR 2.A.5.c

The source category refers to emissions from storage, handling, and transport of mineral products

5.3.6.1. Methodological issue

In a Tier 2 approach, the emissions from storage, handling and transport of mineral products needs to be estimated separately. For this activity, only one 'technology' (the 'Tier 2 default') is available. Therefore, the equation describing the approach is the same as for Tier 1, where the activity data refer to the activity rate for the storage and handling of mineral products.

Activity data

Data on transported mineral by road and railway transport were taken from the statistical publication Transport and communications for the period 2009-2015 and MAKSTAT database for period 2004-2022 (road transport) and the period 2011-2022 (railroad transport).

[27]. The historical data for the quantity of transported minerals in road transport were taken from the Statistical yearbook – chapter Transport for the period 1990-2008 [22], while regarding the railway transport the content of transported minerals in the transported goods in railway transport were estimated.

Table 118 Activity data for source category 2.A.5.c - Storage, handling, and transport of mineral products

Year	Products transported [t]	Year	Products transported [t]	Year	Products transported [t]
1990	246 717	2001	575 864	2012	3 499 387
1991	143 309	2002	685 869	2013	3 407 267
1992	96 043	2003	8 006 331	2014	5 564 332
1993	152 750	2004	10 497 726	2015	4 142 405
1994	49 973	2005	8 475 328	2016	5 034 346
1995	57 838	2006	16 441 405	2017	4 717 295
1996	34 404	2007	4 813 390	2018	8 410 139
1997	106 462	2008	1 965 897	2019	6 405 305
1998	189 443	2009	7 058 289	2020	5 498 961
1999	152 301	2010	2 820 746	2021	9 594 126
2000	48 708	2011	3 330 100	2022	8 482 780

Emission factors

For estimation of emissions for particulates, PM2.5, PM10 and TSP, the emission factors were taken from GB 2023. Used emission factors are given in the table below.

Table 119 Emission factors for source category 2.A.5.c - Storage handling and transport of mineral products.

Pollutant	Value	Unit	References
TSP	12	g/Mg	GB 2023 2.A.5.c Storage handling and transport of mineral products. Table 3-4. pg. 7
PM10	6	g/Mg	GB 2023 2.A.5.c Storage handling and transport of mineral products. Table 3-4. pg. 7
PM2.5	0.6	g/Mg	GB 2023 2.A.5.c Storage handling and transport of mineral products. Table 3-4. pg. 7

5.3.6.2. Source-specific uncertainties and time-series consistency

The activity data uncertainty was estimated to be 10%; the emission factor uncertainty was estimated to be 200% (rating D), based on expert judgment.

5.3.6.3. Source-specific QA/QC and verification

Standard QA/QC procedures were carried out for this source category, i.e, activity data were checked for plausibility and time-series consistency; emission data was checked for completeness and for consistency between the calculation files, NFR tables and the IIR.

- **5.3.6.4.** Source-specific recalculations including changes made in response to the review process No recalculations were carried out in this category.
- **5.3.6.5.** Source-specific planned improvements including those in response to the review process No improvements are planned in this category.

5.4. Chemical Industry – NFR 2B

The following NFR source categories:

- 2.B.1 Ammonia production
- 2.B.2 Nitric acid production
- 2.B.3 Adipic acid production and
- 2.B.4 Carbide production.
- 2.B.7 Soda ash production

In the inventory, these are reported as NO since in North Macedonia this kind of production does not exist. Regarding Soda ash production this category is defined as NE since the process should be checked

5.4.1. Other chemical industry – NFR 2.B.10.a

This source category is important for several pollutants. It is introduced for the first time due to recommendation given by the ERT.

5.4.1.1. Methodological issues

The Tier 2 methodology for emission calculation has been used. Namely, the quantity of activity data is multiplied with the appropriate emission factor.

Activity data

The input data for this source category is the quantity of different type of final products. These data have been taken from the Statistical Yearbooks of the Republic of North Macedonia for the period 1990-2006 [22], and data form MAKSTAT database for period 2007-2022 [29]. As it can be seen from the table below the production of different product was unstable as it is usual in the countries in

transition where factories were closed and change of ownership is frequent and, in those years, when production was stopped the notation key NO has been used.

Table 120 Activity data for source category 2.B.10 – Other chemical industry

Mg Mg Mg Mg Mg Mg Mg Mg	Year	Chlorine production	Phosphate Fertilizers	Polyethylene High density	Polyvinylchloride [Mg]	Sulfuric acid [Mg]	polyurethane [Mg]
1991 2439 2359 NO 24495 102 243 NO 1992 2325 1023 NO 9190 95 077 NO 1993 2358 498 NO 2120 88 814 NO 1994 2394 259 NO NO NO 72 106 NO 1995 2368 NO NO NO 82 619 NO 1996 2562 NO NO 3995 99 545 NO 1997 349 NO NO 10344 105 034 NO 1998 772 NO NO 15658 100 834 NO 1999 61 NO NO NO NO NO NO NO 2000 NO NO NO NO NO NO NO NO 2001 NO N							
1992 2325 1023							
1993 2358 498 NO 2120 88 814 NO 1994 2394 259 NO NO 72 106 NO 1995 2368 NO NO NO 82 619 NO 1996 2562 NO NO NO 3995 99 545 NO 1997 349 NO NO NO 10344 105 034 NO 1998 772 NO NO NO 15658 100 834 NO 1999 61 NO NO NO NO NO NO 2000 NO NO NO NO NO NO NO 2001 NO NO NO NO NO NO NO NO 2002 NO NO </td <td>1991</td> <td>2439</td> <td>2359</td> <td>NO</td> <td>24495</td> <td>102 243</td> <td>NO</td>	1991	2439	2359	NO	24495	102 243	NO
1994 2394 259 NO NO 72 106 NO 1995 2368 NO NO NO 82 619 NO 1996 2562 NO NO NO 3995 99 545 NO 1997 349 NO NO NO 10344 105 034 NO 1998 772 NO NO NO 15658 100 834 NO 1999 61 NO NO NO NO NO NO NO 2000 NO	1992	2325	1023	NO	9190	95 077	NO
1995 2368 NO NO NO 82619 NO 1996 2562 NO NO 3995 99545 NO 1997 349 NO NO 10344 105034 NO 1998 772 NO NO 15658 100834 NO 1999 61 NO NO NO 5134 87770 NO 2000 NO NO NO NO NO NO NO NO 2001 NO 10	1993	2358	498	NO	2120	88 814	NO
1996 2562 NO NO 3995 99 545 NO 1997 349 NO NO 10344 105 034 NO 1998 772 NO NO 15658 100 834 NO 1999 61 NO NO NO 5134 87 770 NO 2000 NO NO NO NO NO NO NO 2001 NO NO NO NO NO NO NO 2002 NO NO NO NO NO NO NO 2002 NO NO NO NO NO NO NO 2003 NO NO NO NO NO NO NO NO 2004 NO 1095 2006 NO NO NO 8122 1006	1994	2394	259	NO	NO	72 106	NO
1997 349 NO NO 10344 105 034 NO 1998 772 NO NO 15658 100 834 NO 1999 61 NO NO NO 5134 87 770 NO 2000 NO NO NO NO NO NO NO 2001 NO NO NO NO NO NO NO 2002 NO NO NO NO NO NO NO 2003 NO NO NO NO NO NO NO 2004 NO NO NO NO NO NO NO 2004 NO NO NO NO NO NO NO 2005 NO NO NO 812 1006 NO 1095 2006 NO NO NO 331 1975 NO 1239 2008 NO	1995	2368	NO	NO	NO	82 619	NO
1998 772 NO NO 15658 100 834 NO 1999 61 NO NO NO 5134 87770 NO 2000 NO NO NO NO NO NO NO 2001 NO NO NO NO NO NO NO 2002 NO NO NO NO NO NO NO 2003 NO NO NO NO NO NO NO 2004 NO NO NO NO NO NO NO 2004 NO NO NO NO NO NO NO 2005 NO NO 812 1006 NO 1095 2006 NO NO 812 1006 NO 1405 2007 NO NO 360 645 NO 1129 2008 NO NO 181 1	1996	2562	NO	NO	3995	99 545	NO
1999 61 NO NO 5134 87 770 NO 2000 NO NO NO NO NO NO NO 2001 NO NO NO NO NO NO NO 2002 NO NO NO NO NO NO NO 2003 NO NO NO NO NO NO NO 2004 NO NO NO NO NO NO NO 2005 NO NO NO NO NO NO NO 2006 NO NO 812 1006 NO 1095 2007 NO NO 360 645 NO 1129 2008 NO NO 331 1975 NO 1239 2009 NO NO 188 894 NO 1033 2011 NO NO NO 319 1978<	1997	349	NO	NO	10344	105 034	NO
2000 NO N	1998	772	NO	NO	15658	100 834	NO
2001 NO N	1999	61	NO	NO	5134	87 770	NO
2002 NO NO NO NO NO 2003 NO NO NO NO NO NO 2004 NO NO NO NO NO NO 2005 NO NO NO 812 1006 NO 1095 2006 NO NO NO 614 NO NO 1405 2007 NO NO 360 645 NO 1129 2008 NO NO 331 1975 NO 1239 2009 NO NO 181 1731 NO 1132 2010 NO NO 188 894 NO 1033 2011 NO NO 319 1978 NO 1059 2012 NO NO 89 1828 NO 1221 2013 NO NO NO 916 NO 1166 2014 NO	2000	NO	NO	NO	NO	NO	NO
2003 NO 1095 NO NO 1405 NO NO 1405 NO NO 1405 NO NO 1405 NO 1095 NO 1405 NO 1405 NO 1405 NO 1405 NO 1129 NO 1129 NO 1129 NO 1129 NO 1239 1209 NO 1239 1239 1209 NO 1132 1239 1209 NO 1132 1201 NO 1132 1201 NO 1033 1201 NO 1033 1201 NO 1201	2001	NO	NO	NO	NO	NO	NO
2004 NO NO NO NO NO 2005 NO NO 812 1006 NO 1095 2006 NO NO 614 NO NO 1405 2007 NO NO 360 645 NO 1129 2008 NO NO 331 1975 NO 1239 2009 NO NO 181 1731 NO 1132 2010 NO NO 188 894 NO 1033 2011 NO NO 319 1978 NO 1059 2012 NO NO 89 1828 NO 1221 2013 NO NO NO 916 NO 1166 2014 NO NO NO 5531 NO 697 2015 NO NO NO 7198 NO 896 2017 NO NO NO <td>2002</td> <td>NO</td> <td>NO</td> <td>NO</td> <td>NO</td> <td>NO</td> <td>NO</td>	2002	NO	NO	NO	NO	NO	NO
2005 NO NO 812 1006 NO 1095 2006 NO NO 614 NO NO 1405 2007 NO NO 360 645 NO 1129 2008 NO NO 331 1975 NO 1239 2009 NO NO 181 1731 NO 1132 2010 NO NO 188 894 NO 1033 2011 NO NO 319 1978 NO 1059 2012 NO NO 89 1828 NO 1221 2013 NO NO NO 916 NO 1166 2014 NO NO NO 5531 NO 697 2015 NO NO NO 7198 NO 896 2017 NO NO NO 7777 NO 1633 2018 NO N	2003	NO	NO	NO	NO	NO	NO
2006 NO NO 614 NO NO 1405 2007 NO NO 360 645 NO 1129 2008 NO NO 331 1975 NO 1239 2009 NO NO 181 1731 NO 1132 2010 NO NO 188 894 NO 1033 2011 NO NO 319 1978 NO 1059 2012 NO NO 89 1828 NO 1221 2013 NO NO NO 916 NO 1166 2014 NO NO NO 5531 NO 697 2015 NO NO NO 7198 NO NO 2016 NO NO NO 7777 NO 1633 2018 NO NO NO 7970 NO 2429 2019 NO NO<	2004	NO	NO	NO	NO	NO	NO
2007 NO NO 360 645 NO 1129 2008 NO NO NO 331 1975 NO 1239 2009 NO NO 181 1731 NO 1132 2010 NO NO 188 894 NO 1033 2011 NO NO 319 1978 NO 1059 2012 NO NO 89 1828 NO 1221 2013 NO NO NO 916 NO 1166 2014 NO NO NO 5531 NO 697 2015 NO NO NO 7198 NO NO 2016 NO NO NO 7777 NO 1633 2018 NO NO NO 7970 NO 2429 2019 NO NO NO 9318 NO 2670	2005	NO	NO	812	1006	NO	1095
2008 NO NO 331 1975 NO 1239 2009 NO NO 181 1731 NO 1132 2010 NO NO 188 894 NO 1033 2011 NO NO 319 1978 NO 1059 2012 NO NO 89 1828 NO 1221 2013 NO NO NO 916 NO 1166 2014 NO NO NO 5531 NO 697 2015 NO NO NO 6662 NO NO 2016 NO NO NO 7198 NO 896 2017 NO NO NO 7777 NO 1633 2018 NO NO NO 7970 NO 2429 2019 NO NO NO 9318 NO 2670	2006	NO	NO	614	NO	NO	1405
2009 NO NO 181 1731 NO 1132 2010 NO NO 188 894 NO 1033 2011 NO NO 319 1978 NO 1059 2012 NO NO NO 89 1828 NO 1221 2013 NO NO NO 916 NO 1166 2014 NO NO NO 5531 NO 697 2015 NO NO NO 6662 NO NO 2016 NO NO NO 7198 NO 896 2017 NO NO NO 7777 NO 1633 2018 NO NO NO 7970 NO 2429 2019 NO NO NO 9318 NO 2670	2007	NO	NO	360	645	NO	1129
2010 NO NO 188 894 NO 1033 2011 NO NO 319 1978 NO 1059 2012 NO NO 89 1828 NO 1221 2013 NO NO NO 916 NO 1166 2014 NO NO NO 5531 NO 697 2015 NO NO NO 6662 NO NO 2016 NO NO NO 7198 NO 896 2017 NO NO NO 7777 NO 1633 2018 NO NO NO 7970 NO 2429 2019 NO NO NO 9318 NO 2670	2008	NO	NO	331	1975	NO	1239
2011 NO NO 319 1978 NO 1059 2012 NO NO 89 1828 NO 1221 2013 NO NO NO 916 NO 1166 2014 NO NO NO 5531 NO 697 2015 NO NO NO NO NO NO 2016 NO NO NO 7198 NO 896 2017 NO NO NO 7777 NO 1633 2018 NO NO NO 7970 NO 2429 2019 NO NO NO 9318 NO 2670	2009	NO	NO	181	1731	NO	1132
2012 NO NO 89 1828 NO 1221 2013 NO NO NO 916 NO 1166 2014 NO NO NO 5531 NO 697 2015 NO NO NO NO NO NO 2016 NO NO NO 7198 NO 896 2017 NO NO NO 7777 NO 1633 2018 NO NO NO 7970 NO 2429 2019 NO NO NO 9318 NO 2670	2010	NO	NO	188	894	NO	1033
2013 NO NO NO 916 NO 1166 2014 NO NO NO 5531 NO 697 2015 NO NO NO NO NO NO 2016 NO NO NO 7198 NO 896 2017 NO NO NO 7777 NO 1633 2018 NO NO NO 7970 NO 2429 2019 NO NO NO 9318 NO 2670	2011	NO	NO	319	1978	NO	1059
2014 NO NO NO 5531 NO 697 2015 NO 896 2016 NO NO NO 896 2017 NO NO NO 7777 NO 1633 2018 NO NO NO 7970 NO 2429 2019 NO NO NO 9318 NO 2670	2012	NO	NO	89	1828	NO	1221
2015 NO NO NO 6662 NO NO 2016 NO NO NO 7198 NO 896 2017 NO NO NO 7777 NO 1633 2018 NO NO NO 7970 NO 2429 2019 NO NO 9318 NO 2670	2013	NO	NO	NO	916	NO	1166
2016 NO NO NO 7198 NO 896 2017 NO NO NO 7777 NO 1633 2018 NO NO NO 7970 NO 2429 2019 NO NO 9318 NO 2670	2014	NO	NO	NO	5531	NO	697
2017 NO NO NO 7777 NO 1633 2018 NO NO NO 7970 NO 2429 2019 NO NO NO 9318 NO 2670	2015	NO	NO	NO	6662	NO	NO
2018 NO NO NO 7970 NO 2429 2019 NO NO NO 9318 NO 2670	2016	NO	NO	NO	7198	NO	896
2019 NO NO NO 9318 NO 2670	2017	NO	NO	NO	7777	NO	1633
	2018	NO	NO	NO	7970	NO	2429
2020 NO NO NO 8178 NO 2815	2019	NO	NO	NO	9318	NO	2670
	2020	NO	NO	NO	8178	NO	2815
2021 NO NO NO 8792 NO 4844	2021	NO	NO	NO	8792	NO	4844
2022 NO NO NO 9354 NO 4285	2022	NO	NO	NO	9354	NO	4285

Emission factors for estimation of pollutants have been taken from GB 2023 and they are presented in the table below.

Table 121 Emission factors for source category 2.B.10.a Other chemical industry

Pollutant	Value	Unit	References
SOx	17 000	g/Mg (100% H ₂ SO ₄)	GB 2023 Table 3.24 Tier 2 emission factors for source category 2.B.10.a Other chemical industry, sulphuric acid production, wet contact process (98% and 78% sulphuric acid)
Hg	4.8	g/Mg	GB 2023 Table 3.32 Tier 2 emission factors for source category 2.B.10.a Other chemical industry, chlorine production
TSP	0.3	kg/ton produced	GB 2023 Table 3.35 Tier 2 emission factors for source category 2.B.10.a Other chemical industry, phosphate fertilizers
PM 10	0.24	kg/ton produced	GB 2023 Table 3.35 Tier 2 emission factors for source category 2.B.10.a Other chemical industry, phosphate fertilizers
PM 2.5	0.18	kg/ton produced	GB 2023 Table 3.35 Tier 2 emission factors for source category 2.B.10.a Other chemical industry, phosphate fertilizers
NMVOC	2.3	kg/ton produced	GB 2023 Table 3.40 Tier 2 emission factors for source category 2.B.10.a Other chemical industry, polyethylene high density
TSP	97	kg/ton produced	GB 2023 Table 3.40 Tier 2 emission factors for source category 2.B.10.a Other chemical industry, polyethylene high density
NMVOC	96	g/ton produced	GB 2023 Table 3.41 Tier 2 emission factors for source category 2.B.10.a Other chemical industry, polyvinylchloride, suspension PVC (S-PVC)
TSP	263	g/ton produced	GB 2023 Table 3.41 Tier 2 emission factors for source category 2.B.10.a Other chemical industry, polyvinylchloride, suspension PVC (S-PVC)
PM 10	100	g/ton produced	GB 2023 Table 3.41 Tier 2 emission factors for source category 2.B.10.a Other chemical industry, polyvinylchloride, suspension PVC (S-PVC)
PM 2.5	5	g/ton produced	GB 2023 Table 3.41 Tier 2 emission factors for source category 2.B.10.a Other chemical industry, polyvinylchloride, suspension PVC (S-PVC)

5.4.1.2. Source-specific uncertainties and time-series consistency

No source specific uncertainty was done for this sector.

5.4.1.3. Source-specific QA/QC and verification

Standard QA/QC procedures were carried out for this source category, i.e. activity data was checked for plausibility and time-series consistency; emission data was checked for completeness and for consistency between the calculation files, NFR tables and the IIR.

- **5.4.1.4.** Source-specific recalculations including changes made in response to the review process No recalculations were done in this category.
- **5.4.1.5.** Source-specific planned improvements including those in response to the review process Deeper analysis of activity data will be conducted for the following submissions.

5.5. Metal Production – NFR 2.C

In this source category activity data, emission factors and implemented methodology is presented for the following NFR source categories: 2.C.1, 2.C.2, 2.C.3, 2.C.5, 2.C.6 and 2.C.7.c. According to Stage 3 review recommendation the NFR category 2C7d Storage, handling, and transport of metal products on p. 4, in the Tier 1 default approach, the dust emissions from storage, handling and transport of metal products are covered by the respective technical chapters. Consequently, the default emission factors are 'included elsewhere' (IE). The Notation key has been changed in accordance with the recommendation given.

5.5.1. Iron and steel production – NFR 2.C.1

In the nineties in Republic of North Macedonia there was one integrated steel plant for iron and steel where primary iron and steel was produced, as well as ingots using hot and cold rolling mills.

Due to the disintegration of Former Yugoslavia, and North Macedonia becoming an independent country, this factory has disintegrated over the years to several smaller installations with different ownership. Currently in Republic of North Macedonia, three installations have this type of production. The first one, Makstil AD Skopje, which has two units, first for steel production uses an electric arc furnace (EAF) with installed BAT (Best Available Techniques), namely fabric filter unit, since 2016, and second for producing ingots using hot rolling mills also with installed BAT and use of natural gas as a fuel. The second installation, ArcelorMittal — renamed Liberty from 2018 due to new ownership produces only ingots using cold rolling mill with BAT as well and uses natural gas as a fuel. The calculation for the period 1990-2015 is made using Tier 1, and for the period 2016-2022 using Tier 2 because since 2016 all units (electric arc furnace, hot rolling mills and cold rolling mills) in the installations are using BAT. The third one is Dojran Stil which have hot rolling mill with BAT in the period of 2008-2022 using Tier 2.

5.5.1.1. Methodological Issues

Activity Data

Activity data for the reporting period 1990-2004 have been taken from the statistical yearbooks chapter Industry [22], and for the period 2005-2015 from the publications Industry in the Republic of North Macedonia [28]. Activity data for the period of 2016-2022 are taken directly from one installation mentioned above, Makstil AD Skopje, and the activity data for cold rolling mill from period 2016-2022 are taken from Makstat database, chapter Industry. Activity data for Dojran Stil are taken directly from the installation. The activity data have variable trend due to fluctuant as market prices as well as change of the ownerships of the companies.

Table 122 Activity data for source category 2.C.1 - Iron and steel production

Year	Products [t]	Year	Products [t]	Year	Products [t]
1990	885 015	2001	583 379	2012	623 642
1991	755 634	2002	960 178	2013	407 027
1992	548 462	2003	760 538	2014	543 608
1993	353 822	2004	833 328	2015	512 568
1994	140 045	2005	807 782	2016	670 386
1995	83 407	2006	905 272	2017	798 429

Year	Products [t]	Year	Products [t]	Year	Products [t]
1996	128 117	2007	982 650	2018	834 408
1997	230 274	2008	862 779	2019	774 692
1998	347 846	2009	781 053	2020	670 459
1999	237 409	2010	823 012	2021	870 224
2000	437 934	2011	927 150	2022	792 329

Table 123 Activity data for steel and hot and cold ingots production in the period of 2016-2022

Year	Name of Products	[t]
2016	Liquid steel	173 113
	Hot rolled sheet	274 721
	Cold rolled sheet	156 071
	Dojran Stil	56 907
2017	Liquid steel	277 599
	Hot rolled sheet	310 840
	Cold rolled sheet	157 756
	Dojran Stil	55 453
2018	Liquid steel	272 415
	Hot rolled sheet	309 504
	Cold rolled sheet	153 181
	Dojran Stil	97 086
2019	Liquid steel	247 017
	Hot rolled sheet	303 867
	Cold rolled sheet	142 714
	Dojran Stil	81 094
2020	Liquid steel	185 330
	Hot rolled sheet	271 463
	Cold rolled sheet	147 623
	Dojran Stil	67 350
2021	Liquid steel	321 453
	Hot rolled sheet	312 659
	Cold rolled sheet	154 549
	Dojran Stil	81 563
2022	Liquid steel	253 468
	Hot rolled sheet	344 311
	Cold rolled sheet	98593
	Dojran Stil	95957

For the estimation of emissions for pollutants, emission factors were taken from GB 2023. Used emission factors are given in the table below.

Table 124 Emission factors for source category 2.C.1 - Iron and steel production, steel making, electric arc furnace, abated by fabric filter

Pollutant	Value	Unit	References
NOx	130	g/Mg steel	GB 2023 2.C.1 Iron and steel production. Table 3-19. pg. 44
СО	1.7	kg/Mg steel	GB 2023 2.C.1 Iron and steel production. Table 3-19. pg. 44
NMVOC	46	g/Mg steel	GB 2023 2.C.1 Iron and steel production. Table 3-19. pg. 44
SO2	60	g/Mg steel	GB 2023 2.C.1 Iron and steel production. Table 3-19. pg. 44
TSP	30	g/Mg steel	GB 2023 2.C.1 Iron and steel production. Table 3-19. pg. 44
PM10	24	g/Mg steel	GB 2023 2.C.1 Iron and steel production. Table 3-19. pg. 44
PM2.5	21	g/Mg steel	GB 2023 2.C.1 Iron and steel production. Table 3-19. pg. 44
ВС	0.36	% of PM2.5	GB 2023 2.C.1 Iron and steel production. Table 3-19. pg. 44
Pb	1.5	g/Mg steel	GB 2023 2.C.1 Iron and steel production. Table 3-19. pg. 44
Cd	0.12	g/Mg steel	GB 2023 2.C.1 Iron and steel production. Table 3-19. pg. 44
Hg	0.076	g/Mg steel	GB 2023 2.C.1 Iron and steel production. Table 3-19. pg. 44
As	0.0081	g/Mg steel	GB 2023 2.C.1 Iron and steel production. Table 3-19. pg. 44
Cr	0.105	g/Mg steel	GB 2023 2.C.1 Iron and steel production. Table 3-19. pg. 44
Cu	0.02	g/Mg steel	GB 2023 2.C.1 Iron and steel production. Table 3-19. pg. 44
Ni	0.41	g/Mg steel	GB 2023 2.C.1 Iron and steel production. Table 3-19. pg. 44
Zn	2.3	g/Mg steel	GB 2023 2.C.1 Iron and steel production. Table 3-19. pg. 44
PCDD/F	3.0	μgI-TEQ/Mg steel	GB 2023 2.C.1 Iron and steel production. Table 3-19. pg. 44
PAHs (Total)	0.48	g/Mg steel	GB 2023 2.C.1 Iron and steel production. Table 3-19. pg. 44
PCBs	2.5	mg/Mg steel	GB 2023 2.C.1 Iron and steel production. Table 3-19. pg. 44

Table 125 Emission factors for source category 2.C.1 - Iron and steel production, rolling mills, cold rolling mills

Pollutant	Value	Unit	References
TSP	96	g/Mg steel	GB 2023 2.C.1 Iron and steel production. Table 3-21. pg. 46

Table 126 Emission factors for source category 2.C.1 - Iron and steel production, rolling mills, hot rolling mills

Pollutant	Value	Unit	References
NMVOC	7	g/Mg steel	GB 2023 2.C.1 Iron and steel production. Table 3-22. pg. 46-47
TSP	9	g/Mg steel	GB 2023 2.C.1 Iron and steel production. Table 3-22. pg. 46-47

5.5.1.2. Source-specific uncertainties and time-series consistency

The activity data uncertainty was estimated to be 2%; the emission factor uncertainty was estimated to be 125% for NMVOC and 40% for PM2.5, based on expert judgment.

5.5.1.3. Source-specific QA/QC and verification

Standard QA/QC procedures were carried out for this source category, i.e. activity data was checked for plausibility and time-series consistency; emission data was checked for completeness and for consistency between the calculation files, NFR tables and the IIR. Source-specific recalculations including changes were made in response to the review process.

5.5.1.4. Source-specific recalculations including changes made in response to the review process Recalculations were carried out in this category due to changing of the activity data for cold rolling mills for the period 2016-2022.

5.5.1.5. Source-specific planned improvements including those in response to the review process ERT recommends a calculation of emissions from NFR 2.C.1 for the whole time series since 1990 by using the Guidebook Default Tier 2 methods for EAF steel production, for hot and for cold rolling. Inventory experts did not receive data for the whole time and there will be a need a of expert support for calculation of historical data, therefore this issue will be resolved during the upcoming IPA project in which one of the planned activities is improving of the air emission inventory.

5.5.2. Ferroalloy's production – NFR 2.C.2.

Ferroalloys are master alloys containing iron and one or more non-ferrous metals as alloying elements. The ferroalloys are usually classified in two groups: bulk ferroalloys and special ferroalloys. Bulk ferroalloys are used in steel production and steel, or iron foundries exclusively, while the use of special ferroalloys is far more versatile.

Depending on the raw material that is used (primary or secondary raw material), the production of ferroalloys can be carried out as a primary or secondary process.

In the Country, there are three major installations for production of ferroalloys: ferrosilicon, ferronickel, and ferrosilicon manganese. The installation "Skopski Leguri" produces ferrosilicon manganese and was operational in the period 2007 – 2012. "Jugohrom ALZAR DOOEL" produces ferrosilicon and EURONIKEL (FENI) INDUSTRY produces ferronickel.

"Jugohrom ALZAR DOOEL" is one of the biggest industrial polluters in Republic of North Macedonia. The installation has an IPPC environmental permit with adjustment plan, according to which the installation was supposed to install a filter facility for all electric furnaces until 01 April 2014. This deadline given by the Government of Republic of North Macedonia was postponed until October 2016. The second deadline has not been reached either, and that was the reason why the State Environmental Inspectorate closed the installation for a period of 6 months, in November 2016, with an approval of the Ministry of environment and physical planning. The installation remains closed until the requirement for installation of filter facility is not fulfilled. In the period 2017-2022, there was no ferroalloys production from this installation since the operator did not install the necessary filter.

FENI Industry is one of the biggest installations in the sector Ferroalloys Production (ferronickel production). In the period 2012-2013 this installation installed ESF (electrostatic filter) in 2 (two) biggest emission points (rotary kilns). The installation has scrubbers for reduction of emission gases from 2 electric furnaces, and thus fulfills the requirements given in the IPPC environmental permit. This installation worked with reduced capacity of around 40% compared to 2015. This installation was

under bankruptcy proceedings from 2017. In 2018 this installation received a new owner changed the name in EURONICKEL Industry and started operations again during the reporting year.

This sector significantly contributed to the national total amount of emission of particulates until 2016.

5.5.2.1. Methodological issue

Emissions coming from this sector have been calculated as a sum of ferrosilicon produced, multiplied with implied emission factors, and ferronickel and ferrosilicon manganese produced, multiplied with emission factors taken from GB 2019.

Activity Data

The activity data for ferrosilicon production has been taken from the Statistical yearbooks - chapter Industry, Energy and Construction for period 1990-2004[22], and publication Industry in the Republic of Macedonia for the period 2005–2015[28]. Emission measurements for TSP were considered for the following years 2012, 2013, 2014 and 2016.

Measurement data for TSP for the period 2005-2017 was reported by the operator FENI. Activity data for the period 2018-2022 for ferroalloys production are taken directly from the installation with new ownership EURONICKEL INDUSTRY.

Table 127 Activity data for the source category 2.C.2 - Ferroalloy production

Year	Total Alloy produced [t]	Year	Total Alloy produced [t]	Year	Total Alloy produced [t]
1990	85 148	2001	8 779	2012	146 970
1991	77 442	2002	15 085	2013	165 803
1992	107 866	2003	67 283	2014	163 489
1993	78 357	2004	83 160	2015	130 970
1994	72 134	2005	106 590	2016	69 455
1995	72 735	2006	108 920	2017	34 558
1996	92 638	2007	175 719	2018	51 831
1997	85 908	2008	170 252	2019	78 959
1998	106 661	2009	60 458	2020	82 870
1999	78 009	2010	133 347	2021	73 884
2000	58 520	2011	184 310	2022	38 651

The dips in the ferroalloys production activity data in 2001 of 85% and in 2009 of 64% and a jumps in 2004 of 346% (approx. 4.5 times) and in 2010 of 121% (approx. 4.2 times), are due to several reasons for the fluctuation in the trend of ferroalloys production activity: the dip in 2001 was due to national war in Macedonia, in 2009 due to the economy crisis, and that also the two main companies have changed ownerships over the years and that this has influenced production.

Emission factors

For calculation of PM2.5, PM10 and TSP from 1990 to 2011 as well as 2015 coming from ferronickel and ferrosilicon manganese production, GB 2023 emission factors have been used.

Table 128 Emission factors for source category 2.C.2 - Ferroalloys production – production of ferronickel for historical data

Pollutant	Value	Unit	References
PM10	850	g/Mg alloy produced	GB 2023 Table 3.1 Tier 1 emission factors for source category 2.C.2 Ferroalloys production pg. 7
PM2.5	600	g/Mg alloy produced	GB 2023 Table 3.1 Tier 1 emission factors for source category 2.C.2 Ferroalloys production pg. 7
TSP	1000	g/Mg alloy produced	GB 2023 Table 3.1 Tier 1 emission factors for source category 2.C.2 Ferroalloys production pg. 7
ВС	10	% PM2.5	GB 2023 Table 3.1 Tier 1 emission factors for source category 2.C.2 Ferroalloys production pg. 7

For the estimation of emissions coming from the ferrosilicon production, due to the huge difference of the calculated emissions with the use of EF and emission measurements data, as well as no implementation of BAT in this installation, implied EF for TSP has been used, while EF for PM10 and PM2.5 have been calculated as 0.85 and 0.60 of TSP Emission factor value. These emission factors are presented in the following table.

Table 129 Implied emission factors for 2.C.2 Ferroalloys production – production of ferrosilicon for historical data

Pollutant	Value	Unit
PM10	244.8	kg/Mg alloy produced
PM2.5	172.8	kg/Mg alloy produced
TSP	288	kg/Mg alloy produced

Emission measurements

For the period 2012-2014, TSP emission measurements coming from ferrosilicon production were taken into account, while PM10 and PM2.5 emissions coming from this installation were calculated using the emission factors presented in the Table 128 above. For 2015, since no measurements were delivered by the company, TSP, PM10 and PM2.5 emissions coming from ferrosilicon production were calculated using the emission factors presented in Table 129. For 2016, measurement data for TSP emissions as well as, activity data for ferrosilicon produced was made available by the operator. The emissions of PM10 and PM2.5 were calculated using the values using proportions (0.85% and 0,60% of TSP emissions factor value). The installation did not operate since 2016 therefore there no measurements since that year. For ferronickel emission discontinuous measurements (four per year) for TSP were available for the period 2005-2022. These measurements were used to calculate the yearly emissions.

5.5.2.2. Source-specific uncertainties and time-series consistency

The activity data uncertainty was estimated to be 5%; the emission factor uncertainty was estimated to be 40% (rating B), based on expert judgment. The inconsistency of the time-series may appear, considering that for the historical data implied emission factors was used, whereas for the period 2012-2014 measurement data was used.

5.5.2.3. Source-specific QA/QC and verification

Standard QA/QC procedures were carried out for this source category, i.e. activity data was checked for plausibility and time-series consistency; emission data was checked for completeness and for

consistency between the calculation files, NFR tables and the IIR. The data received in form of an excel template aligned with the national legislation are checked for consistency by MEPP. Concerning jumps, dips or lack of emission data, the operator is contacted with official letter, and asked for the reasons behind the jumps and deeps of the measured emission or lack of required data. Mainly the jumps and deeps in this category are caused by the unstable operation of these installations and frequent change of ownership.

5.5.2.4. Source-specific recalculations including changes made in response to the review process No recalculations were carried out in this category.

5.5.2.5. Source-specific planned improvements including those in response to the review process No improvements are planned in this category.

5.5.3. Aluminum production – NFR 2.C.3

Primary aluminum is produced by means of electrolytic reduction of alumina. This chapter covers the complete process of primary aluminum production, from the production of alumina from bauxite to the shipment of the aluminum from the facilities. The secondary aluminum production covers the whole process, starting from the melting of scrap. In Republic of North Macedonia, there is no primary aluminum production.

5.5.3.1. Methodological Issues

Activity Data

2020

The activity data were taken from the Statistical Yearbooks 1990-2020 and for the period 2007-2019 from the installation for secondary aluminum production named RZ Institute Skopje. For the period 2020 and 2022 there is no activity data from RZ Institute Skopje because this installation has gone bankrupt. Type of activity data used for emission estimation is presented in the following list.

1990 – 1998	Pressed aluminum products and aluminum alloy products
1999 – 2005	Aluminum and aluminum alloys
2005 – 2006	Sum of unwrought aluminum, alloyed in ingot
	Aluminum alloyed bars, rods, profiles
	Aluminum tubes and pipes, non-alloyed
2007-2019	Aluminum alloys, in ingots, SSO
	RZ Institute secondary aluminum production

Table 130 Activity data for source category 2.C.3 - Aluminum production

Aluminum alloys, in ingots, SSO

Year	Aluminum and aluminum products [t]	Year	Aluminum and aluminum products [t]	Year	Aluminum and aluminum products [t]
1990	8 841	2001	6 809	2012	1 870
1991	7 829	2002	10 516	2013	1 245
1992	5 150	2003	8 573	2014	812
1993	4 819	2004	1 679	2015	161

Year	Aluminum and aluminum products [t]	Year	Aluminum and aluminum products [t]	Year	Aluminum and aluminum products [t]
1994	4 991	2005	1 489	2016	122
1995	3 709	2006	2 316	2017	382
1996	3 924	2007	1 757	2018	278
1997	5 561	2008	1 531	2019	857
1998	5 850	2009	1 637	2020	NE
1999	10 777	2010	1 897	2021	NE
2000	7 641	2011	2 079	2022	NE

Noted jumps in the activity data of secondary aluminium production in 1999 of 84% and in 2002 of 54% and a dip in 2004 of 80%, by ERT are due to the changes in production capacity, and that the major company was closed in March 2004.

Emission factors

The emission factors used in this source category are presented in the following table.

Table 131 Emission factors for source category 2.C.3 - Secondary Aluminum production

Pollutant	Value	Unit	References
TSP	2	kg/Mg aluminum	GB 2023 Tier 1, 2.C.3 Aluminum production. Secondary production. Table 3-4. pg. 15
PM10	1.4	kg/Mg aluminum	GB 2023 Tier 1, 2.C.3 Aluminum production. Secondary production. Table 3-4. pg. 15
PM2.5	0.55	kg/Mg aluminum	GB 2023 Tier 1, 2.C.3 Aluminum production. Secondary production. Table 3-4. pg. 15
ВС	2.3	% of PM2.5	GB 2023 Tier 1, 2.C.3 Aluminum production. Secondary production. Table 3-4. pg. 15
PCDD/F	35	μgI-TEQ/Mg aluminum	GB 2023 Tier 1, 2.C.3 Aluminum production. Secondary production. Table 3-4. pg. 15
НСВ	5	g/Mg aluminum	GB 2023 Tier 1, 2.C.3 Aluminum production. Secondary production. Table 3-4. pg. 15

5.5.3.2. Source-specific uncertainties and time-series consistency

The activity data uncertainty was estimated to be 2%; the emission factor uncertainty was estimated to be 40% (rating B), based on expert judgment.

5.5.3.3. Source-specific QA/QC and verification

Standard QA/QC procedures were carried out for this source category, i.e. activity data were checked for plausibility and time-series consistency; emission data was checked for completeness and for consistency between the calculation files, NFR tables and the IIR.

- **5.5.3.4.** Source-specific recalculations including changes made in response to the review process No recalculations were done in this sector.
- 5.5.3.5. Source-specific planned improvements including those in response to the review process No planned improvements in this category.

5.5.4. Lead production – NFR 2.C.5

This subchapter presents information on atmospheric emissions during primary and secondary lead production. The primary lead production in the country was conducted in the smelter company in the town of Veles, which ceased operations in 2003.

5.5.4.1. Methodological issues

To estimate (calculate) emissions from lead production, the general equation has been adopted:

$$E_{pollutant} = \sum AR_{production} \times EF_{pollutnat}$$

where:

 $E_{pollutant}$ = the emission of a specified pollutant

 $AR_{production}$ = the annual lead production

*EF*_{pollutant} = is the emission factor of this pollutant

Activity data

Statistical data for production of crude lead were taken as primary lead production and the production of refined lead as secondary production.

Table 132 Activity data for source category 2.C.5 - Lead production

Year	Lead, Primary (t)	Lead, Secondary (t)	Year	Lead, Primary (t)	Lead, Secondary (t)
1990	28 585*	21 858*	2006	NO	46****
1991	33 938*	19 265*	2007	NO	18****
1992	27 860*	23 341*	2008	NO	21****
1993	23 575*	21 881*	2009	NO	39****
1994	20 569*	20 965*	2010	NO	NE
1995	24 007*	22 490*	2011	NO	NE
1996	29 259*	23 584*	2012	NO	NE
1997	30 508*	26 046*	2013	NO	NE
1998	29 242*	28 415*	2014	NO	NE
1999	27 086*	19 738*	2015	NO	2 648
2000	19 000**	17 137***	2016	NO	4 472
2001	19 000**	13 543***	2017	NO	7 486
2002	19 000**	11 934****	2018	NO	10 576
2003	19 000**	6 357****	2019	NO	10 962
2004	NO	3 591****	2020	NO	10 339
2005	NO	34****	2021	NO	10 339
2006	NO	46****	2022	NO	11 747

List of data source:

*Statistical yearbooks- Crude Lead (=Primary Lead) and Refined Lead (=Secondary

Lead)**http://minerals.usgs.gov/minerals/pubs/commodity/lead/lead_myb03.pdf

^{****}http://www.bgs.ac.uk/mineralsuk/statistics/europeanStatistics.html

 ${\ensuremath{}^{****}}{\ensuremath{}^{*}}{\ensure$

Emission factors

Emission factors for primary lead production and secondary lead production are taken from GB 2023. These emission factors are presented in the following two tables.

Table 133 Emission factors for source category 2.C.5 - Primary Lead production

Pollutant	Value	Unit	References
TSP	560	g/Mg lead	GB 2023 Tier 2 emission factors for source category 2.C.5 Lead production, primary lead production, unabated, Table 3.2, pg. 14
PM10	450	g/Mg lead	GB 2023 Tier 2 emission factors for source category 2.C.5 Lead production, primary lead production, unabated, Table 3.2, pg. 14
PM2.5	225	g/Mg lead	GB 2023 Tier 2 emission factors for source category 2.C.5 Lead production, primary lead production, unabated, Table 3.2, pg. 14
Pb	150	g/Mg lead	GB 2023 Tier 2 emission factors for source category 2.C.5 Lead production, primary lead production, unabated, Table 3.2, pg. 14
Cd	0.8	g/Mg lead	GB 2023 Tier 2 emission factors for source category 2.C.5 Lead production, primary lead production, unabated, Table 3.2, pg. 14
Hg	1	GB 2023 Tier 2 emission factors for source category 2.C.5 Lead production, unabated, Table 3.2, pg. 14	
As	0.18	GB 2023 Tier 2 emission factors for source category 2.C.5 Lead production, unabated, Table 3.2, pg. 14	
PCDD/F	5	μg I-TEQ/Mg lead	GB 2023 Tier 2 emission factors for source category 2.C.5 Lead production, primary lead production, unabated, Table 3.2, pg. 14
PCBs	1.9	g/Mg lead	GB 2023 Tier 2 emission factors for source category 2.C.5 Lead production, primary lead production, unabated, Table 3.2, pg. 14

Table 134 Emission factors for source category 2.C.5 – Secondary Lead production 1990-2009

Pollutant	Value	Unit	References
TSP	14 800	g/Mg lead	GB 2023 Tier 2 emission factors for source category 2.C.5 Lead production, secondary lead production, unabated, Table3-4, pg. 16
PM10	11 800	g/Mg lead	GB 2023 Tier 2 emission factors for source category 2.C.5 Lead production, secondary lead production, unabated, Table3-4, pg. 16
PM2.5	8 800	g/Mg lead	GB 2023 Tier 2 emission factors for source category 2.C.5 Lead production, secondary lead production, unabated, Table3-4, pg. 16
Pb	5 800	g/Mg lead	GB 2023 Tier 2 emission factors for source category 2.C.5 Lead production, secondary lead production, unabated, Table3-4, pg. 16
Cd	15	g/Mg lead	GB 2023 Tier 2 emission factors for source category 2.C.5 Lead production, secondary lead production, unabated, Table3-4, pg. 16
As	47	g/Mg lead	GB 2023 Tier 2 emission factors for source category 2.C.5 Lead production, secondary lead production, unabated, Table3-4, pg. 16
Zn	35	g/Mg lead	GB 2023 Tier 2 emission factors for source category 2.C.5 Lead production, secondary lead production, unabated, Table3-4, pg. 16
PCDD/F	8	μg I-TEQ/Mg lead	GB 2023 Tier 2 emission factors for source category 2.C.5 Lead production, secondary lead production, unabated, Table3-4, pg. 16
PCBs	3.2	g/Mg lead	GB 2023 Tier 2 emission factors for source category 2.C.5 Lead production, secondary lead production, unabated, Table3-4, pg. 16

Table 135 Emission factors for source category 2.C.5 - Secondary Lead production for 2010-2022

Pollutant	Value	Unit	References	
TSP	20	g/Mg lead	GB 2023 Tier 2 emission factors for source category 2.C.5 Lead production, secondary lead production assuming average technology in the EU-28, Table 3-5, pg. 17	
PM10	16	g/Mg lead	GB 2023 Tier 2 emission factors for source category 2.C.5 Lead production, secondary lead production assuming average technology in the EU-28, Table 3-5, pg. 17	
PM2.5	8	g/Mg lead	GB 2023 Tier 2 emission factors for source category 2.C.5 Lead production, secondary lead production assuming average technology in the EU-28, Table 3-5, pg. 17	
SOx	5000	g/Mg lead	GB 2023 Tier 2 emission factors for source category 2.C.5 Lead production, secondary lead production assuming average technology in the EU-28, Table 3-5, pg. 17	
Pb	1.1	g/Mg lead	GB 2023 Tier 2 emission factors for source category 2.C.5 Lead production, secondary lead production assuming average technology in the EU-28, Table 3-5, pg. 17	
Cd	0.05	g/Mg lead	GB 2023 Tier 2 emission factors for source category 2.C.5 Lead production, secondary lead production assuming average technology in the EU-28, Table 3-5, pg. 17	
As	0.3	g/Mg lead	GB 2023 Tier 2 emission factors for source category 2.C.5 Lead production, secondary lead production assuming average technology in the EU-28, Table 3-5, pg. 17	
Zn	0.05	g/Mg lead	GB 2023 Tier 2 emission factors for source category 2.C.5 Lead production, secondary lead production assuming average technology in the EU-28, Table 3-5, pg. 17	
PCBs	2.6	g/Mg lead	GB 2023 Tier 2 emission factors for source category 2.C.5 Lead production, secondary lead production assuming average technology in the EU-28, Table 3-5, pg. 17	
PCDD/F	3.2	μg I- TEQ/Mg lead	GB 2023 Tier 2 emission factors for source category 2.C.5 Lead production, secondary lead production assuming average technology in the EU-28, Table 3-5, pg. 17	

5.5.4.2. Source-specific uncertainties and time-series consistency

The activity data uncertainty was estimated to be 5%; the emission factor uncertainty was estimated to be 40% (rating B), based on expert judgment.

5.5.4.3. Source-specific QA/QC and verification

Standard QA/QC procedures were carried out for this source category, i.e. activity data was checked for plausibility and time-series consistency; emission data was checked for completeness and for consistency between the calculation files, NFR tables and the IIR.

- 5.5.4.4. Source-specific recalculations including changes made in response to the review process No recalculations were carried out in this category.
- 5.5.4.5. Source-specific planned improvements including those in response to the review process. No planned improvements in this category.

5.5.5. Zinc production-NFR 2.C.6

Zinc is produced from various primary and secondary raw materials. Primary zinc is produced from ores, which contain 85% zinc sulfide (by weight) and 8–10% iron sulfide, with the total zinc concentration about 50%. A secondary zinc smelter is defined as: any plant or factory in which zinc-bearing scrap or zinc-bearing materials, other than zinc-bearing concentrates (ores) derived from a mining operation, are processed. In practice, primary smelters often also use zinc scrap or recycled dust as input material. The primary zinc production in the country was conducted in the smelter company in town of Veles, which ceased operation in 2003.

5.5.5.1. Methodological Issues

Activity Data

The activity data has been taken from the Statistical yearbook — chapter Industry, energy and construction for the period 1990-2022*, as well as from the following website http://minerals.usgs.gov/minerals/pubs/commodity/zinc/zinc_myb05.pdf**[30]. In the statistical publications, the activity data for the Primary Zinc production were defined as Crude Zinc and for Secondary Zinc production as Refined Zinc.

Table 136 Activity data for source category 2.C.6 - Zinc production

	-	
Year	Primary Zinc (t)	Secondary zinc (t)
1990	56 734*	17 383*
1991	56 081*	17 244*
1992	52 728*	14 526*
1993	51 931*	3 315*
1994	41 984*	4 532*
1995	44 081*	34 526*
1996	59 416*	37 853*
1997	59 693*	3 116*
1998	58 865*	8 594*
1999	53 304*	4 017*
2000	52000**	NO
2001	52 000**	NO
2002	56 000**	NO
2003	28 000**	NO
2004	25 000**	NO
2005	NO	NO
2006	NO	NO
2007	NO	NO
2008	NO	NO
2009	NO	NO
2010	NO	NO
2011	NO	NO
2012	NO	NO
2013	NO	NO
2014	NO	NO
2015	NO	NO
2016	NO	NO
2017	NO	NO
2018	NO	NO
2019	NO	NO

Year	Primary Zinc (t)	Secondary zinc (t)
2020	NO	NO
2021	NO	NO
2022	NO	NO

Emission factors for primary lead production and secondary zinc production were taken from GB 2023. These emission factors are presented in the following two tables.

Table 137 Emission factors for source category 2.C.6 - Primary Zinc production

Pollutant	Value	Unit	References
TSP	210	g/Mg zinc	GB 2023 2.C.6 Zinc production. Table 3.2. pg. 15
PM10	170	g/Mg zinc	GB 2023 2.C.6 Zinc production. Table 3.2. pg. 15
PM2.5	130	g/Mg zinc	GB 2023 2.C.6 Zinc production. Table 3.2. pg. 15
Pb	35	g/Mg zinc	GB 2023 2.C.6 Zinc production. Table 3.2. pg. 15
Cd	5	g/Mg zinc	GB 2023 2.C.6 Zinc production. Table 3.2. pg. 15
Hg	5	g/Mg zinc	GB 2023 2.C.6 Zinc production. Table 3.2. pg. 15
Zn	80	g/Mg zinc	GB 2023 2.C.6 Zinc production. Table 3.2. pg. 15
PCBs	0.9	g/Mg zinc	GB 2023 2.C.6 Zinc production. Table 3.2. pg. 15
PCDD/F	5	μg I-TEQ/Mg zinc	GB 2023 2.C.6 Zinc production. Table 3.2. pg. 15

Table 138 Emission factors for source category 2.C.6 - Secondary Zinc production

Pollutant	Value	Unit	References
TSP	425	g/Mg zinc	GB 2023 2.C.6 Zinc production. Table 3.4. pg. 17
PM10	340	g/Mg zinc	GB 2023 2.C.6 Zinc production. Table 3.4. pg. 17
PM2.5	255	g/Mg zinc	GB 2023 2.C.6 Zinc production. Table 3.4. pg. 17
Pb	65	g/Mg zinc	GB 2023 2.C.6 Zinc production. Table 3.4. pg. 17
Cd	35	g/Mg zinc	GB 2023 2.C.6 Zinc production. Table 3.4. pg. 17
Hg	0.006	g/Mg zinc	GB 2023 2.C.6 Zinc production. Table 3.4. pg. 17
As	5.9	g/Mg zinc	GB 2023 2.C.6 Zinc production. Table 3.4. pg. 17
Zn	150	g/Mg zinc	GB 2023 2.C.6 Zinc production. Table 3.4. pg. 17
PCBs	0.0031	g/Mg zinc	GB 2023 2.C.6 Zinc production. Table 3.4. pg. 17
PCDD/F	100	μg I-TEQ/Mg zinc	GB 2023 2.C.6 Zinc production. Table 3.4. pg. 17

5.5.5.2. Source-specific uncertainties and time-series consistency

The activity data uncertainty was estimated to be 5%; the emission factor uncertainty was estimated to be 40% (rating B), based on expert judgment.

5.5.5.3. Source-specific QA/QC and verification

Standard QA/QC procedures were carried out for this source category, i.e. activity data was checked for plausibility and time-series consistency; emission data was checked for completeness and for consistency between the calculation files, NFR tables and the IIR.

5.5.5.4. Source-specific recalculations including changes made in response to the review process No recalculations were carried out in this category.

5.5.5. Source-specific planned improvements including those in response to the review process No improvements are planned in this category.

5.5.6. Copper production –NFR 2.C.7 a

Copper is produced from primary and secondary raw materials.

Primary cooper is produced from concentrates produced from copper ores. The pyro-metallurgical copper production route entails a number of steps, depending on the concentrate used. The majority of concentrates are sulfides and the stages involved are roasting, smelting, converting, refining and electro-refining. Concentrates usually contain 20–30% Cu. In roasting, charge material of copper mixed with a siliceous flux is heated in air to about 650 °C, eliminating 20–50% of Sulfur and portions of volatile trace elements. The roasted product, calcine, serves as a dried and heated charge for the smelting furnace.

In Republic of North Macedonia there is a primary production of copper with pampering of copper ores for obtaining cathode copper.

A secondary copper smelter is defined as any plant or factory in which copper-bearing scrap or copper-bearing materials, other than copper-bearing concentrates (ores) derived from a mining operation, is processed by metallurgical or chemical process into refined copper and copper powder (a premium product).

In Republic of North Macedonia, it was a secondary production of copper in the factory RZ Institut Skopje in the period 2007-2019. In 2020 there is no activity data from this installation because it has gone bankrupt. The emissions are presented as NE because that company was working during 2020, however we could not gather the needed information due to their bankruptcy and lost of contact with the installation representatives.

5.5.6.1. Methodological Issues

Activity Data

Activity data is available for secondary copper production (from the installation that has that production), for the period 2007-2019. No activity data were available for period 2020-2022.

Table 139 Activity data for source category 2.C.7 a - Copper production

Year	Primary copper (t)	Secondary copper (t)
1990	NO	NO
1991	NO	NO
1992	NO	NO
1993	NO	NO
1994	NO	NO
1995	NO	NO
1996	NO	NO
1997	NO	NO
1998	NO	NO
1999	NO	NO

Year	Primary copper (t)	Secondary copper (t)
2000	NO	NO
2001	NO	NO
2002	NO	NO
2003	NO	NO
2004	NO	NO
2005	NO	NO
2006	NO	NO
2007	NO	7
2008	NO	32
2009	NO	58
2010	NO	50
2011	NO	32
2012	NO	62
2013	NO	103
2014	NO	93
2015	NO	58
2016	NO	46
2017	NO	23
2018	NO	11
2019	NO	13
2020	NO	NE
2021	NO	NE
2022	NO	NE

Emission factors for secondary copper production are taken from GB 2023. These emission factors are presented in the following table.

Table 140 Emission factors for source category 2.C.6 - Secondary Copper production

Pollutant	Value	Unit	References
TSP	320	g/Mg copper	GB 2023 2.C.7.a Copper production. Tier 2. Table 3.3. pg. 13
PM10	250	g/Mg copper	GB 2023 2.C.7.a Copper production. Tier 2. Table 3.3. pg. 13
PM2.5	190	g/Mg copper	GB 2023 2.C.7.a Copper production. Tier 2. Table 3.3. pg. 13
ВС	0.1	g/Mg copper	GB 2023 2.C.7.a Copper production. Tier 2. Table 3.3. pg. 13
SOx	1 320	g/Mg copper	GB 2023 2.C.7.a Copper production. Tier 2. Table 3.3. pg. 13
Pb	24	g/Mg copper	GB 2023 2.C.7.a Copper production. Tier 2. Table 3.3. pg. 13
Cd	2.3	g/Mg copper	GB 2023 2.C.7.a Copper production. Tier 2. Table 3.3. pg. 13
As	2	g/Mg copper	GB 2023 2.C.7.a Copper production. Tier 2. Table 3.3. pg. 13
Cu	28	g/Mg copper	GB 2023 2.C.7.a Copper production. Tier 2. Table 3.3. pg. 13
Ni	0.13	g/Mg copper	GB 2023 2.C.7.a Copper production. Tier 2. Table 3.3. pg. 13
PCBs	3.7	g/Mg copper	GB 2023 2.C.7.a Copper production. Tier 2. Table 3.3. pg. 13
PCDD/F	50	μg I-TEQ/Mg copper	GB 2023 2.C.7.a Copper production. Tier 2. Table 3.3. pg. 13

5.5.6.2. Source-specific uncertainties and time-series consistency

The activity data uncertainty was estimated to be 5%; the emission factor uncertainty was estimated to be 40% (rating B), based on expert judgment.

5.5.6.3. Source-specific QA/QC and verification

Standard QA/QC procedures were carried out for this source category, i.e. activity data was checked for plausibility and time-series consistency; emission data was checked for completeness and for consistency between the calculation files, NFR tables and the IIR.

5.5.6.4. Source-specific recalculations including changes made in response to the review process No recalculations were done for this NFR category.

5.5.6.5. Source-specific planned improvements including those in response to the review process It is planned in this category to make control on the activity data from copper production in Republic of North Macedonia that is covered with primary or secondary copper production given in EMEP/EEA air pollutant emission inventory guidebook 2019, 2.C.7.a Copper production. This is planned to be carried out within the forthcoming technical project IPA II in the frame of activities which refer to improving of emission inventory.

5.5.7. Other metal production – NFR 2.C.7.c

This category covers silver production in the reporting period 1990-1998.

5.5.7.1. Methodological issues

Tier 1 method was used for calculation of emissions in this source category. This activity does not occur after the year 1998.

Activity Data

Activity data for this source category are taken from the Statistical yearbooks for the period 1990-1998.

Table 141 Activity data for source category 2.C.7.c – Other Metals production

Year	1990	1991	1992	1993	1994	1995	1996	1997	1998
Silver produced [t]	15	19	16	9	13	13	21	28	32

Emission factors

The emission factor on TSP has been taken from GB 2013.

Table 142 Emission factors for 2.C.7.c - Other Metals production

Pollutant	Value	Unit	References
TSP	0.8	g/Mg metal produced	GB 2013 2.C.7.c Other metal production, Table 3.1, pg. 5

5.5.7.2. Source-specific uncertainties and time-series consistency

This category includes TSP emissions only. Uncertainties have not yet been estimated for TSP emissions since this activity is not occurring since 1998.

5.5.7.3. Source-specific QA/QC and verification

No QA/QC procedures were carried out for this source category since it is no longer occurring in the Republic of North Macedonia.

5.5.7.4. Source-specific recalculations including changes made in response to the review process No recalculations were done in this category.

5.5.7.5. Source-specific planned improvements including those in response to the review process

The NEIT noted that EF for SOx is miss linked in calculation file to I excel column instead of E excel column and this will be corrected in the next submission.

5.6. Other products and solvents used – NFR 2.D

In this source category activity data, emission factors and implemented methodology are presented for the following NFR source categories: 2.D.3, 2.D.3.b, 2.D.3.c, 2.D.3.d, 2.D.3.e, 2.D.3.f, 2.D.3.g, 2.D.3.h, 2.G, 2.H.1, 2.H.2 and 2.I.

5.6.1. Domestic solvent use including fungicides NFR 2.D.3.a

This category covers the use of fungicides in agriculture. The share of NMVOC emissions from this category of total NMVOC emissions in 2022 was 1.3%.

5.6.1.1. Methodological issues

The Tier 1 method has been applied for period 1990-2004. This method assumes an averaged or typical technology and abatement implementation in the country and includes an integrated emission factor and emission factors for sub-processes within the source category. It is applied at a national level, using the population data. Tier 2 method was applied for the period 2005-2022 due to available activity data in the SSO publications. During the stage 3 review the ERT recommended the Party to move to the Tier 2 method for the next submission or as soon as possible or meanwhile to include this improvement into the improvement plan with clear steps and schedule and to report on progress of the work in the next submissions. Therefore, in this category according to the recommendation available data from production and import - export was gathered. Calculated activity data (production+import)-export were used for calculation of emissions coming from Cosmetics and toiletries (Perfume or room deodorizers, Toilet waters, Hair sprays) Shaving lotions, before shaving and after shaving, Other body care cosmetics - lotions, creams, including baby care products Soaps and other body cosmetics;) Car care products (antifriz); Households products (Washing and cleaning products for machine for hands wash, Pastes, powders and other cleaning preparations and Policies, creams and similar preparations for the maintenance of woodwork) and pesticides (Insecticides, rodenticides, fungicides, herbicides). In case of pharmaceutical products, the population was used as activity data.

Activity Data

Table 143 Activity data for source category 2.D.3.a - Domestic solvent use including fungicides for different products and product types for period 1990-2004 using Tier 1 methodology

Year	Population number
1990	2 028 000
1991	2 033 964
1992	2 056 000
1993	2 066 000
1994	1 957 265
1995	1 974 800
1996	1 991 398
1997	2 002 340
1998	2 012 705
1999	2 021 578

Year	Population number
2000	2 038 651
2001	2 023 654
2002	2 029 892
2003	2 035 196
2004	2 038 514

Table 144 Activity data for source category 2.D.3.a Domestic solvent use including fungicides for different products and product types for period 2005-2020 using Tier 2 methodology

Year	Cosmetics and toiletries (all)[kg]	Car care products (all) [kg]	Households' products (all) [kg]	Pesticides [kg]	Population
2005	2976576	NE	17540231	2285000	2038514
2006	7130576	NE	12664627	2285000	2041941
2007	8787562	33000	19415000	2318000	2045177
2008	7357406	7000	24636000	2768000	2048619
2009	6069440	34000	22674000	1522000	2052722
2010	11875502	204000	26796000	1648000	2057284
2011	10143673	18000	26796000	2378000	2059794
2012	7860433	1650553	31701757	1841549	2062294
2013	8016920	1415169	31357189	1867702	2065769
2014	8748658	1542853	32139836	1991441	2069172
2015	9294805	1720015	34439775	2053650	2071278
2016	9204934	1971099	35923836	1991441	2073702
2017	9508722	2283249	36668778	2146356	2075301
2018	10222125	2014718	39191712	1862376	2077132
2019	10377830	2527605	38717511	1969119	2076255
2020	10955857	2010092	40304000	2394361	2068808
2021	9861861	1873117	33096115	2372857	1837713
2022	8788029	1979074	33013115	1732368	1836714

The emission factors for calculation of NMVOC emissions for both methodologies coming from this sector are presented in the following table.

Table 145 Emission factors for the source category 2.D.3.a - Domestic solvents use including fungicides

Pollutant	Methodology	Value	Unit		References
NMVOC	Tier 2	127	g/kg product	Cosmetics and toiletries (all)	GB 2023 Table 3.4 Tier 1 emission factors for source category 2.D.3.a Domestic solvent use including fungicides for different products and product types p.16
NMVOC	Tier 2	180	g/kg product	Car care products (all)	GB 2023 Table 3.4 Tier 1 emission factors for source category 2.D.3.a Domestic solvent use p.16

Pollutant	Methodology	Value	Unit		References
NMVOC	Tier 2	48	g/person	Pharmaceutical	GB 2023 Table 3.5 Tier 1 emission factors for source category 2.D.3.a Domestic solvent use p.17
NMVOC	Tier 2	16	g/kg product	Households products (all)	GB 2023 Table 3.4 Tier 1 emission factors for source category 2.D.3.a Domestic solvent use p.16
NMVOC	Tier 2	150	g/kg product	Pesticides	GB 2023 Table 3.4 Tier 1 emission factors for source category 2.D.3.a Domestic solvent use p.16
NMVOC	Tier 1	1.2	kg/person/year	Persons	GB 2023 3.D.2 Domestic solvent use including fungicides. Table 3.1, pg. 9

5.6.1.2. Source-specific uncertainties and time-series consistency

The activity data uncertainty for 2.D was estimated to be 20% according to expert judgment; the emission factor uncertainty was estimated to be 125% (rating C) for NMVOC and 40% (rating B) for PM2.5 based on EMEP Guidebook.

Population number is taken from statistical publications and MAKSTAT database, but there is uncertainty of these activity considering that the population census has been carried out only three times in 1991, 1994 and 2002, while for the other years estimated numbers were used.

5.6.1.3. Source-specific QA/QC and verification

Standard QA/QC procedures were carried out for this source category, i.e. activity data was checked for plausibility and time-series consistency; emission data was checked for completeness and for consistency between the calculation files, NFR tables and the IIR.

5.6.1.4. Source-specific recalculations including changes made in response to the review process Relculations were done during period 2012-2022 due to available activity data on import-export of cosmetics and car care products.

5.6.1.5. Source-specific planned improvements including those in response to the review process It is planned to replace Tier 1 with Tier 2 methodology also for historical emissions however due to limitation of data this activity will be planned in the forthcoming IPA II technical project, due to the need to use historical surrogate data since statistical data from that period are not so detail

5.6.2. Road paving with asphalt NFR 2.D.3.b

Asphalt is commonly referred to as bitumen, asphalt cement, asphalt concrete or road oil, and is mainly produced in petroleum refineries. In some countries, the laid mixed product is also referred to as 'asphalt'.

This section covers emissions from asphalt paving operations, as well as subsequent releases from the paved surfaces.

NMVOC emissions and particles are released to the air from this activity and the contribution of this sector in the total NMVOC in 2022 is 0.03% and in TSP is 0.42%. Due to the non-completeness of the

activity data, the emissions of these pollutants and the contribution of this sector in the national total may be underestimated.

5.6.2.1. Methodological issues

To estimate emissions from road paving with asphalt, the following general equation has been applied:

$$E_{pollutant} = \sum AR_{production} \times EF_{pollutnat}$$

where:

 $E_{pollutant}$ = the emission of the specified pollutant,

AR_{prodution} = the activity rate (data) for the road paving with asphalt,

 $EF_{pollutant}$ = the emission factor for this pollutant.

Activity data

The operators themselves have gathered activity data. Data from several asphalt production companies in 2016 delivered data on produced asphalt. For the period 2017-2022, activity data are taken from Statistical yearbook — Chapter Construction [22]. Summarized data on national asphalt produced were used as activity data for estimation of emissions in this sector. The activity data for this sector may be underestimated, especially for the historical years, due to incomplete statistical data on asphalt production, as well as change of ownership and close of some of the asphalt production companies. The activity data are presented in the following table.

Table 146 Activity data for source category 2.D.3.b - Road paving with asphalt

Year	Asphalt produced (t)	Year	Asphalt produced (t)	Year	Asphalt produced (t)
1990	86 320	2001	137 305	2012	336 725
1991	74 296	2002	119 651	2013	389 163
1992	44 067	2003	124 492	2014	336 545
1993	65 194	2004	149 323	2015	500 943
1994	84 729	2005	180 559	2016	366 536
1995	87 814	2006	130 847	2017	461 664
1996	98 545	2007	101 508	2018	527 798
1997	53 600	2008	170 049	2019	522 926
1998	101 563	2009	232 001	2020	565 780
1999	136 540	2010	274 654	2021	563 440
2000	327 937	2011	356 596	2022	540 391

ERT noted a jump in all emissions in 2000 of 145% (approx. by 2.4 times) in road paving with asphalt. To a question on the issue North Macedonia answered that in the statistics the length of roads is the highest in 2000.

Emission factors

Emission factors for estimation of emissions in this source category are presented in the following table. Until 2015 the installations for asphalt production had A-permit with adjustment plan and from that year they build fabric filters with abatement efficiency of 99 %. Due to fact that these types of installations have installed abatement technology started from 2015, a new methodology for calculation of TSP, PM10 and PM2.5 emissions was used.

Table 147 Emission factors for source category 2.D.3.b - Road paving with asphalt

Pollutant	Value	Unit	References
NMVOC	16	g/Mg asphalt	GB 2023 2.D.3.b Road paving with asphalt. Table 3.1. pg. 9
TSP	14 000	g/Mg asphalt	GB 2023 2.D.3.b Road paving with asphalt. Table 3.1. pg. 9
PM10	3 000	g/Mg asphalt	GB 2023 2.D.3.b Road paving with asphalt. Table 3.1. pg. 9
PM2.5	400	g/Mg asphalt	GB 2023 2.D.3.b Road paving with asphalt. Table 3.1. pg. 9
ВС	5.7	% PM2.5	GB 2023 2.D.3.b Road paving with asphalt. Table 3.1. pg. 9

5.6.2.2. Source-specific uncertainties and time-series consistency

The inconsistency of the emissions in this sector comes from the fact that incomplete statistical data on asphalt production, as well as change of ownership and closedown of some of the asphalt production companies. No specific uncertainty analysis was done for this category.

5.6.2.3. Source-specific QA/QC and verification

Standard QA/QC procedures were carried out for this source category, i.e. activity data was checked for plausibility and time-series consistency; emission data was checked for completeness and for consistency between the calculation files, NFR tables and the IIR.

5.6.2.4. Source-specific recalculations including changes made in response to the review process No recalculations were carried out in this category.

5.6.2.5. Source-specific planned improvements including those in response to the review process The national emission inventory team has found update activity data in MAKSTAT database for the period 2010-2022 and will make recalutaion of these emissions in the next submission and will search for historical activity data or use method for time seria consistency for thr next submission.

5.6.3. Asphalt roofing NFR 2.D.3.c

The source category covers emissions from the asphalt roofing industry. The industry manufactures saturated felt, roofing and siding shingles, and roll roofing and sidings. Most of these products are used in roofing and other building applications. Asphalt roofing contributes to NMVOC emissions by a share of 0.008% in 2022.

5.6.3.1. Methodological issues

To estimate (calculate) emissions from the asphalt roofing, the following general equation has been adopted:

$$E_{pollutant} = \sum AR_{production} \times EF_{pollutnat}$$

where:

 $E_{pollutant}$ = the emission of the specified pollutant,

AR_{prodution} = the activity rate (data) for the asphalt roofing,

 $EF_{pollutant}$ = the emission factor for this pollutant.

Activity Data

For the period 1990-1999 activity data have been taken from the Statistical Yearbooks – chapter Industry, Energy and Construction [22]. For the period 2005-2022, revised activity data for period 2007-2014, were taken from MAKSTAT database [29], while due to the lack of data for the period 2002-2004 the gap filling interpolation method has been used.

The activity data for this source category is presented in the following table.

Table 148 Activity data for source category 2.D.3.c - Asphalt roofing

Year	Asphalt roofing products (t)	Year	Asphalt roofing products (t)	Year	Asphalt roofing products (t)
1990	12 572	2001*	12 525	2012	17 727
1991	12 593	2002*	12 104	2013	13 676
1992	5 325	2003*	11 668	2014	6 814
1993	4 067	2004*	12 458	2015	10 146
1994	5 901	2005	11 305	2016	14 402
1995	8 873	2006	9 773	2017	15 183
1996	5 992	2007	12 164	2018	17 114
1997	6 442	2008	14 401	2019	15 699
1998	5 489	2009	18.783	2020	15 175
1999	13 429	2010	14 908	2021	18 119
2000*	13 075	2011	25 145	2022	17 563

^{*}based on extrapolation

Due to a change of methodology in the collection of statistical data over the years, the list of different type of data collected in 1990-1999 and 2005-2022 are presented below. Data for the years 2000-2005 are not covered by the statistics but are calculated by use of interpolation.

Type of data available in the national statistics for 1990-1999 and 2005-2020 in tons

1990 – 1999 Roof patch, Bitumen paper and jute;

Bituminous products for building;

2005 – 2022 Roofing or waterproofing felts of roofing cardboard based on bitumen in rolls;

Roofing or waterproofing felts of metal foil based on bitumen in rolls;

Bituminous paper in rolls;

Bituminous bands of glass wave in rolls;

Bituminous plastic bands in rolls;

Bituminous emulsions;

Tar or other bituminous materials;

Other bituminous mixtures based on natural asphalt, bitumen and other (ex. bitumen whale).

Emission factors

Emission factors used for this source category are presented in the following table:

Table 149 Emission factors for source category 2.D.3.c - Road paving with asphalt

Pollutant	Value	Unit	References
СО	9.5	g/Mg shingle	GB 2023 2.D.3.c Asphalt roofing. Table 3.1. pg. 7
NMVOC	130	g/Mg shingle	GB 2023 2.D.3.c Asphalt roofing. Table 3.1. pg. 7
TSP	1 600	g/Mg shingle	GB 2023 2.D.3.c Asphalt roofing. Table 3.1. pg. 7
PM10	400	g/Mg shingle	GB 2023 2.D.3.c Asphalt roofing. Table 3.1. pg. 7
PM2.5	80	g/Mg shingle	GB 2023 2.D.3.c Asphalt roofing. Table 3.1. pg. 7
ВС	0.013	% PM2.5	GB 2023 2.D.3.c Asphalt roofing. Table 3.1. pg. 7

5.6.3.2. Source-specific uncertainties and time-series consistency

No specific uncertainty analysis was done for this category. The inconsistency in this sector is due to use of different sources for the activity data in different period.

5.6.3.3. Source-specific QA/QC and verification

Standard QA/QC procedures were carried out for this source category, i.e. activity data was checked for plausibility and time-series consistency; emission data was checked for completeness and for consistency between the calculation files, NFR tables and the IIR.

- **5.6.3.4.** Source-specific recalculations including changes made in response to the review process No recalculations were done in this category.
- 5.6.3.5. Source-specific planned improvements including those in response to the review process No planned improvements in this category.

5.6.4. Coating application – NFR 2.D.3.d

Coating applications in North Macedonia include emissions from quantity of paint applied in the industrial applications, other industrial applications and domestic application and this category is source of NMVOC emissions.

Methodological Issues

The methodology of the estimation of emissions in this sector was done using Croatian methodology represented in The Republic of Croatia Informative Inventory Report, 2012 [42]. Namely, according to this methodology sectors Industrial application and Decorative application contribute in paints consumption with equal weighting as sector-Other industrial application. Considering the previously mentioned, the application of paint in the industry present about 33% of the paint produced in North Macedonia, and the same proportion was allocated the two other sectors. As a result, each sub-sector contributes with 33.3% to the total application of paint. At the end, the total amount of the paint produced in North Macedonia was distributed by the present methodology and resulting amounts of

paint in each sub-sector were multiplied by the recommended FE (NMVOC) from the EMEP / EEA Guidebook – 2019.

Activity data

The quantity of paint produced in the period 2005-2015 is taken from the publications Industry in the Republic of North Macedonia [28], for the period 2016-2022 data were taken from the MAKSTAT database [29], and the data for the imported-exported paints are taken from the publication External trade in the Republic of North Macedonia for the period 2006-2015 [31]. For the years 2016-2022, the data on the quantities of imported and exported paint was taken from MAKSTAT database [31].

Table 150 Activity data for source category 2.D.3.d - Coating application

Year	Industrial application	Decorative application	Other industrial application
- Cui	Paint [kg]	Paint [kg]	Paint [kg]
1990	5.039.128	5.039.128	5.039.128
1991	4.595.330	4.595.330	4.595.330
1992	4.309.611	4.309.611	4.309.611
1993	4.044.373	4.044.373	4.044.373
1994	3.671.095	3.671.095	3.671.095
1995	3.416.632	3.416.632	3.416.632
1996	3.608.965	3.608.965	3.608.965
1997	3.687.358	3.687.358	3.687.358
1998	3.771.334	3.771.334	3.771.334
1999	3.651.404	3.651.404	3.651.404
2000	3.739.061	3.739.061	3.739.061
2001	3.745.437	3.745.437	3.745.437
2002	3.728.881	3.728.881	3.728.881
2003	3.800.742	3.800.742	3.800.742
2004	3.683.217	3.683.217	3.683.217
2005	2.022.667	2.022.667	2.022.667
2006	3.388.000	3.388.000	3.388.000
2007	3.555.000	3.555.000	3.555.000
2008	3.669.667	3.669.667	3.669.667
2009	3.067.333	3.067.333	3.067.333
2010	3.458.333	3.458.333	3.458.333
2011	3.797.247	3.797.247	3.797.247
2012	4.567.084	4.567.084	4.567.084
2013	4.419.688	4.419.688	4.419.688
2014	4.273.947	4.273.947	4.273.947
2015	4.411.483	4.411.483	4.411.483
2016	4.121.652	4.121.652	4.121.652
2017	3.577.271	3.577.271	3.577.271

Veer	Industrial application	Decorative application	Other industrial application
Year	Paint [kg]	Paint [kg]	Paint [kg]
2018	3.362.854	3.362.854	3.362.854
2019	3.503.141	3.503.141	3.503.141
2020	3.315.972	3.315.972	3.315.972
2021	3.512.100	3.512.100	3.512.100
2022	3.436.858	3.436.858	3.436.858

Emission factors

Emission factors for Tier 1 method from GB 2023 are presented in the following table:

Table 151 Emission factors for source category 2.D.3.d - Coating application

Pollutant	Value	Unit	References
NMVOC(Decorative coating application)	150	g/kg paint applied	GB 2023 Table 3-1 Tier 1 emission factors for source category 2.D.3.d Decorative coating application
NMVOC (Industrial coating application)	400	g/kg paint applied	GB 2023 Table 3-2 Tier 1 emission factors for source category 2.D.3.d Industrial coating application
NMVOC (Other coating application)	200	g/kg paint applied	GB 2023 Table 3-3 Tier 1 emission factors for source category 2.D.3.d other coating application

5.6.4.1. Source-specific uncertainties and time-series consistency

No specific uncertainty analysis was done for this category.

5.6.4.2. Source-specific QA/QC and verification

Standard QA/QC procedures were carried out for this source category, i.e. activity data was checked for plausibility and time-series consistency; emission data was checked for completeness and for consistency between the calculation files, NFR tables and the IIR.

5.6.4.3. Source-specific recalculations including changes made in response to the review process No recalculations were done in this category.

5.6.4.4. Source-specific planned improvements including those in response to the review process

The National emission inventory team has found activity data in the national statistics on of produced buses and application of paint in contructiom. There are no activity data available on wood coating, coil coating, vehicle refinishing, or other non-industrial paint application). National emission inventory team will make emission calculations with the continue to search available data and improve calculation in this category in 2025 with the support of technical experts of from IPA II technical project.

5.6.5. Degreasing - NFR 2.D.3.e

Degreasing is a process of cleaning products from water-insoluble substances such as grease, fats, oils, waxes, carbon deposits, fluxes and tars. In most cases, the process is applied to metal products, but also plastic, fiberglass, printed circuit boards and other products are treated by the same process.

5.6.5.1. Methodological issues

The Tier 1 method has been applied. This method assumes an averaged or typical technology and abatement implementation in the country and includes an integrated emission factor and emission

factors for sub-processes within the source category. It is applied at a national level, using the population data.

Activity Data

The activity data – number of populations for this source category have been updated with revised numbers from MAKSTAT database for the period 1994-2022, while for the period 1990-1993, data from the hard copy publications form SSO was used.

Table 152 Activity data for the source category 2.D.3.e Degreasing

Year	Population number	Year	Population number	Year	Population number
1990	2 028 000	2001	2 023 654	2012	2 062 294
1991	2 033 964	2002	2 029 892	2013	2 065 769
1992	2 056 000	2003	2 035 196	2014	2 069 172
1993	2 066 000	2004	2 038 514	2015	2 071 278
1994	1 957 265	2005	2 041 941	2016	2 073 702
1995	1 974 800	2006	2 045 177	2017	2 075 301
1996	1 991 398	2007	2 048 619	2018	2 077 132
1997	2 002 340	2008	2 052 722	2019	2 076 255
1998	2 012 705	2009	2 038 651	2020	2 068 808
1999	2 021 578	2010	2 057 284	2021	1 836 713
2000	2 038 651	2011	2 059 794	2022	1 836 714

Emission factors

Emission factor used for the calculation of NMVOC emissions coming from this category are presented below.

Table 153 Emission factor for source category 2.D.3.e Degreasing

Pollutant	Value	Unit	References
NMVOC	0.85	kg/inhabitant/year	Informative Inventory Report of Republic of Serbia for 2013 [42] which refers to GB 2006

5.6.5.2. Source-specific uncertainties and time-series consistency

An EF by population does not reflect country-specific circumstances, real conditions, and habits of use, and gives increasing emissions when the population grows. In case population is estimated, this brings additional uncertainty to the emission levels

5.6.5.3. Source-specific QA/QC and verification

Standard QA/QC procedures were carried out for this source category, i.e. activity data were checked for plausibility and time-series consistency; emission data was checked for completeness and for consistency between the calculation files, NFR tables and the IIR.

5.6.5.4. Source-specific recalculations including changes made in response to the review process No recalculations were done in this category.

5.6.5.5. Source-specific planned improvements including those in response to the review process

The National emission inventory team has found data of the named solvents for the period 2012-2022 in the MAKSTAT database. Historical data will be searched in the hard copy statistical yearsbook or suitable method for time consistency will be use. Calculation of emissions from available data will be reported in the next submission.

5.6.5.6. Dry cleaning – NFR 2.D.3.f

Dry cleaning refers to any process of removal of contamination from furs, leather, down leathers, textiles, or other objects made of fibers using organic solvents. The most significant pollutants from dry cleaning are non-methane volatile organic compounds.

5.6.5.7. Methodological issues

The calculation in this category is based on the volume of solvents, including chlorinated organic chlorinated solvents using Tier 1 method. This method assumes an averaged or typical technology, and abatement implementation in the country, and includes an integrated emission factor and emission factors for sub-processes within the source category. It is applied at a national level, using the population.

Activity Data

Due to the lack of data on textile treatment, the activity data considered in this source category is population. Population data for the source category 2.D.3.e – Degreasing, is presented in Table 180.

Emission factors

Emission factor for the calculation of NMVOC emissions is given below.

Table 154 Emission factor for the source category 2.D.3.f- Dry Cleaning

Pollutant	Value	Unit	References
NMVOC	0.3	kg/inhabitant/year	GB 2013 2.D.3.f Dry cleaning. pg. 6

5.6.5.8. Source-specific uncertainties and time-series consistency

An EF by population does not reflect country-specific circumstances, real conditions, and habits of use, and gives increasing emissions when the population grows. In case population is estimated, this brings additional uncertainty to the emission levels.

5.6.5.9. Source-specific QA/QC and verification

Standard QA/QC procedures were carried out for this source category, i.e. activity data was checked for plausibility and time-series consistency; emission data was checked for completeness and for consistency between the calculation files, NFR tables and the IIR.

5.6.5.10. Source-specific recalculations including changes made in response to the review process No recalculations were done in this category.

5.6.5.11. Source-specific planned improvements including those in response to the review process MEPP already sent questionnaires on amount of treated textile in dry cleaning shops but received only limited number of responses. MEPP will make analysis of ather IIR reports and try to gather information of the manner of activity data gathering.

5.6.6. Chemical products – NFR 2.D.3.g

This subchapter covers emissions from:

- polyurethane and polystyrene foam processing;
- asphalt blowing;
- tire production;
- specialty organic chemical industry;

- manufacture of paints, inks and glues;
- fat, edible and non-edible oil extraction;
- Industrial application of adhesives.

Emissions from manufacturing of chemical products include NMVOCs and NH₃. The chemical production in the country is variable, because after the fall of ex-Yugoslavia, the economy in our country experienced several shocks that damaged the local economy. The economy began to recover in 1995 and recovered only after 2001. This situation influenced the trend series emissions coming from the chemicals production branch.

5.6.6.1. Methodological issues

The following equation form Tier 2 approach has been used for calculating emissions from chemical products:

$$E_{pollutant} = \sum\nolimits_{tehnologies} AR_{use,tehnology} \times EF_{tehnology,pollutant}$$

Where:

 $AR_{use, tehnology}$ = the use of specific chemical products.

EF_{tehnology, pollutants} = the emission factor for this technology and these pollutants.

Activity Data

The activity data for this source category have been taken from the Statistical yearbook - chapter Industry, energy and construction for the period 1990-2004[22] and publication Industry in the Republic of North Macedonia for the period 2005-2015 [28] as well as MAKSTAT database for 2016-2021 [29]. The activity data are presented in the following table.

Table 155 Activity data for source category 2.D.3.g - Chemical products

Year	Polyester/k	Polyurethane /kg	Polystyrene /kg	Shoos/pairs	Leather tanning/kg	Paints. Inks and glues/kg	Asphalt blowing/ tones	Rubber Processing/k g and Manufactori ng of tyres
1990	16 450 000	NO	NO	6 638 000	NO	NO	12 500	NO
1991	12 440 000	NO	NO	4 049 000	NO	NO	12 500	NO
1992	11 150 000	NO	364 000	3 667 000	10 797 000	NO	12 500	1 355 000
1993	4 466 000	NO	382 000	2 308 000	10 197 000	NO	12 500	1 145 000
1994	8 628 000	NO	455 000	1 529 000	9 177 000	NO	12 500	978 000
1995	9 904 000	NO	378 500*	1 122 000	10 119 500*	NO	12 500	680 500*
1996	3 212 000	NO	302 000	1 231 000	11 062 000	NO	12 500	383 000
1997	3 820 000	NO	363 000	1 509 000	7 491 000	NO	12 500	371 000
1998	2 642 000	NO	547 000	1 790 000	4 908 000	NO	12 500	417 000
1999	NO	NO	NO	2 488 000	NE	NO	12 500	NO
2000	NO	NO	NO	2 129 000	NE	NO	12 500	NO
2001	NO	NO	NO	1 073 000	NE	NO	5 500	NO
2002	NO	NO	NO	1 521 000	NE	NO	5 500	NO

Year	Polyester/k	Polyurethane /kg	Polystyrene /kg	Shoos/pairs	Leather tanning/kg	Paints. Inks and glues/kg	Asphalt blowing/ tones	Rubber Processing/k g and Manufactori ng of tyres
2003	NO	NO	NO	1 799 000	NE	NO	5 500	NO
2004	NO	NO	NO	1 785 000	NE	NO	5 500	NO
2005	NO	1 095 000	NO	1 540 000	NE	6 068 000	5 500	NO
2006	NO	1 405 000	NO	1 739 000	NE	5 252 000	5 500	NO
2007	NO	1 129 000	NO	2 860 000	114 000	4 982 000	5 500	NO
2008	NO	1 239 000	NO	2 853 000	111 000	4 604 000	5 500	NO
2009	NO	1 132 000	NO	3 036 000	143 000	3 972 000	5 500	NO
2010	NO	1 033 000	NO	3 290 000	141 000	5 407 000	5 500	NO
2011	NO	1 059 000	NO	3 148 000	160 000	2 834 000	5 500	NO
2012	NO	1 221 000	NO	3 047 000	93 000	1 914 000	5 500	NO
2013	NO	1 166 000	NO	4 631 000	94 000	1 306 000	5 500	NO
2014	NO	697 000	NO	5 128 000	81 000	817 000	5 500	NO
2015	NO	NO	NO	4 195 000	94 000	991 000	5 500	NO
2016	NO	896 000	NO	4 286 000	81 000	891 000	2 000	NO
2017	NO	1 633 000	NO	3 815 000	87 000	768 000	2 000	NO
2018	NO	2 429 000	NO	3 550 000	98 000	867 000	2 000	NO
2019	NO	2 670 000	NO	2 910 000	80 000	1 319 000	2 000	NO
2020	NO	2 815 000	NO	1 583 000	67 000	933 000	2 000	NO
2021	NO	4 844 000	NO	1 543 000	107 000	1 077 000	2 000	NO
2022	NO	4 285 000	NO	1 911 000	99 000	787 000	2 000	NO

^{*}Data for chemical products in 1995 is based on Interpolation between the previous year and the next year. The value is the average of the previous year and the next year. For the other years, it is expected that no production occurs.

Emission factors

The emission factors which were used for calculation of emissions taken from GB 2023 for different types of activities. The emission factors are presented in the following table.

Table 156 Emission factors for source category 2.D.3.g - Chemical Products

Pollutant	Value	Unit	References
NMVOC	50	g/kg polyester monomer used	GB 2023 2.D.3.g Chemical products. Table 3-2. pg. 17
NMVOC	120	g/kg polyurethane foam processed	GB 2023 2.D.3.g Chemical products. Table 3-3. pg. 17-18
NMVOC	60	g/kg polystyrene	GB 2023 2.D.3.g Chemical products. Table 3-4. pg. 18
NMVOC	8	g/kg rubber produced	GB 2023 2.D.3.g Chemical products. Table 3-5. pg. 18-19
NMVOC	1710	g/Mg asphalt	GB 2023 2.D.3.g Chemical products. Table 3-10. pg. 21 Bitumen blowing, coating
TSP	12000	g/Mg asphalt	GB 2023 2.D.3.g Chemical products. Table 3-10. pg. 21 Bitumen blowing, coating
Cd	0.0001	g/Mg asphalt	GB 2023 2.D.3.g Chemical products. Table 3-10. pg. 21

Pollutant	Value	Unit	References
			Bitumen blowing, coating
As	0.0005	g/Mg asphalt	GB 2023 2.D.3.g Chemical products. Table 3-10. pg. 21 Bitumen blowing, coating
Cr	0.006	g/Mg asphalt	GB 2023 2.D.3.g Chemical products. Table 3-10. pg. 21 Bitumen blowing, coating
Ni	0.05	g/Mg asphalt	GB 2023 2.D.3.g Chemical products. Table 3-10. pg. 21 Bitumen blowing, coating
Se	0.0005	g/Mg asphalt	GB 2023 2.D.3.g Chemical products. Table 3-10. pg. 21 Bitumen blowing, coating
PAH	2.55	g/Mg asphalt	GB 2023 2.D.3.g Chemical products. Table 3-10. pg. 21 Bitumen blowing, coating
NMVOC	11	g/kg products (paints. inks. glues)	GB 2023 2.D.3.g Chemical products. Table 3-11. pg. 22
NMVOC	0.045	kg/pairs of shoes	GB 2023 2.D.3.g Chemical products. Table 3-13. pg. 23
NH ₃	0.68	g/kg raw hid (leather tanning)	GB 2023 2.D.3.g Chemical products. Table 3-14. pg. 24

5.6.6.2. Source-specific uncertainties and time-series consistency

No source-specific uncertainties were done for the sector; the emissions vary due to the unstable economy over the years.

5.6.6.3. Source-specific QA/QC and verification

Standard QA/QC procedures were carried out for this source category, i.e. activity data were checked for plausibility and time-series consistency; emission data was checked for completeness and for consistency between the calculation files, NFR tables and the IIR.

5.6.6.4. Source-specific recalculations including changes made in response to the review process No recalculations were done in this category.

5.6.6.5. Source-specific planned improvements including those in response to the review process

The national emissi inventory team has started to gather data on the solvents used for pharmaceutical products manufacturing. However historical data before 2002 are missing and need to be gathered or method for time consistency will be used. Data on asphalt blowing are included. Manufacture of tires and adhesive tapes are not occurring. No data were found on the textile finishing. It is planned to improve this category in the next submission.

5.6.7. Printing NFR – 2.D.3.h

Printing involves the use of inks, which may contain a proportion of organic solvents. Therefore, NMVOC emissions are expected from this process.

5.6.7.1. Methodological issues

The simplified Tier 1 methodology for calculation of NMVOC emissions has been used. Namely, the quantity of ink used was multiplied with the appropriate emission factor.

Activity data

Data on ink consumption in the printing industry has been required from the SSO for the time series 1990-2022 since this data was not published in the statistical publications. Because the data has not

been published so far, MEPP received a request by the SSO not to publish the activity data in the report. Therefore, this activity data is not presented in this report.

Emission factors

Emission factor for NMVOC has been taken from GB 2023 and is presented in table below.

Table 157 Emission factors for source category 2.D.3.h Printing

Pollutant	Value	Unit	References
NMVOC	500	g/kg ink	GB 2023 Table 3-1 Tier 1 emission factors for source category 2.D.3.h Printing

5.6.7.2. Source-specific uncertainties and time-series consistency

No source specific uncertainty was done for this sector.

5.6.7.3. Source-specific QA/QC and verification

Standard QA/QC procedures were carried out for this source category, i.e. activity data were checked for plausibility and time-series consistency; emission data was checked for completeness and for consistency between the calculation files, NFR tables and the IIR.

- 5.6.7.4. Source-specific recalculations including changes made in response to the review process No recalculations were done in the sector.
- 5.6.7.5. Source-specific planned improvements including those in response to the review process The confidentiality of activity data was included in the IIR as recommended by ERT. No planned improvements in this sector.

5.6.8. Other solvent and product use – NFR 2.D.3.i and 2.G

NMVOC emissions are expected from this sector. Emissions from the following activities have been calculated in this source category:

- 060404 Fat, edible and non-edible oil extraction.
- 060406 Preservation of wood;
- 060602 Use of tobacco and
- 060603 Use of shoes

Under the NFR category 2.G we have reported emissions from Tobacco use (tones) and Use of shoes calculated from produced, imported, and exported products, and under 2.D.3.i emissions from Fat, edible and non-edible oil extraction and Preservation of wood have been included.

5.6.8.1. Methodological Issues

To calculate activity data for these categories Use of shoes and Tobacco consumption the following formula have been used Use of shoes/tobacco = (produced product + imported product)-exported product. Consumption of creosote has been calculated with the formula 75 kg creosote/m3 wood, where kg of wood preservative used was taken from the Statistical yearbooks. Regarding the activity Fat, edible and non-edible oil extraction statistics on different vegetable oil types have been used for estimation of seed quantity.

Activity data

The activity data on tobacco and pairs of shoes has been taken from the Statistical yearbooks - chapter Industry, energy and construction for the period 1990-2004 [22], and from the publication of the

"Industry in the Republic of North Macedonia", for the period 2005-2015 [28]. For 2016-2022 data from MAKSTAT database were used [29]. The deep that is visible in 2009 and jump in the 2012 are according to the produce parquet and wood packaging; the variable trend may be due to the economic reasons and not stable production in this sector.

The activity data are presented in the following table.

Table 158 Activity data for the source category 2.D.3.i and 2.G - Other solvent and product use (Source Statistical yearbooks (1990-2004) and MAKSTAT/Industry in the Republic of North Macedonia (2005-2022),

Year	Tobacco [tones]	Creosote [kg]	Fat, edible and non-edible oil extraction-seed [kg]	Pairs of shoes
1990	26 481	261 440	38 303	6 638 000
1991	16 576	209 583	39 190	4 049 000
1992	22 297	241 980	32 975	3 667 000
1993	25 964	197 934	30 218	2 308 000
1994	21 143	163 377	47 598	1 529 000
1995	16 152	123 016	30 990	1 122 000
1996	13 980	82 013	54 763	1 231 000
1997	14 904	55 388	52 515	1 509 000
1998	23 297	47 551	47 063	1 790 000
1999	29 005	43 522	28 165	2 488 000
2000	18 991	38 073	39 048	2 129 000
2001	26 110	127 308	38 388	1 073 000
2002	20 547	100 054	71 910	1 521 000
2003	25 689	111 090	64 698	1 799 000
2004	15 317	158 732	61 148	1 785 000
2005	2 721	86 241	59 138	1 590 000
2006	1 859	78 125	63 578	1 892 504
2007	996	68 738	61 973	2 121 404
2008	3 854	53 457	76 303	2 320 371
2009	4 893	11 184	75 020	3 142 440
2010	10413	58 775	78 368	2 957 658
2011	10 138	54 654	82 848	3 408 829
2012	3 151	144 749	80 805	3 388 013
2013	6 365	113 177	77 008	1 599 026
2014	11 133	82 300	83 258	3 876 229
2015	9 040	106 723	102 678	4 381 143
2016	6 425	83 275	101 118	4 355 002
2017	6 113	78 150	65 370	3 876 436
2018	12 674	89 210	76 733	1 700 692
2019	7 388	74 151	83 548	1 066 440

Year	Tobacco [tones]	Creosote [kg]	Fat, edible and non-edible oil extraction-seed [kg]	Pairs of shoes
2020	7 956	88 288	74 978	926 875
2021	7 664	95 430	76 403	679 481
2022	1 086	87 228	87 228	554 253

Emission factors

The Emission factors have been taken from GB 2023 and are presented in the following table.

Table 159 Emission factors for source category 2.D.3.i and 2.G - Other solvents and product use

Pollutant	Activity	Value	Unit	References
NOx	Tobacco combustion	1.8	kg/ton tobacco	GB 23 Table 3-15 Tier 2 emission factors for source category 2.D.3.i, 2.G Other solvent and product use, Tobacco combustion, pg.22,23
NMVOC	Tobacco combustion	4.84	kg/ton tobacco	GB 23 Table 3-15 Tier 2 emission factors for source category 2.D.3.i, 2.G Other solvent and product use, Tobacco combustion, pg.22,23
NH3	Tobacco combustion	4.15	kg/ton tobacco	GB 23 Table 3-15 Tier 2 emission factors for source category 2.D.3.i, 2.G Other solvent and product use, Tobacco combustion, pg.22,23
PM2.5	Tobacco combustion	27	mg/cigarette	GB 23 Table 3-15 Tier 2 emission factors for source category 2.D.3.i, 2.G Other solvent and product use, Tobacco combustion, pg.22,23
PM10	Tobacco combustion	27	mg/cigarette	GB 23 Table 3-15 Tier 2 emission factors for source category 2.D.3.i, 2.G Other solvent and product use, Tobacco combustion, pg.22,23
TSP	Tobacco combustion	27	mg/cigarette	GB 23 Table 3-15 Tier 2 emission factors for source category 2.D.3.i, 2.G Other solvent and product use, Tobacco combustion, pg.22,23
ВС	Tobacco combustion	0.45	% of PM2.5	GB 23 Table 3-15 Tier 2 emission factors for source category 2.D.3.i, 2.G Other solvent and product use, Tobacco combustion, pg.22,23
СО	Tobacco combustion	55.1	kg/ton tobacco	GB 23 Table 3-15 Tier 2 emission factors for source category 2.D.3.i, 2.G Other solvent and product use, Tobacco combustion, pg.22,23
Cd	Tobacco combustion	5.4	μg/cigarette	GB 23 Table 3-15 Tier 2 emission factors for source category 2.D.3.i, 2.G Other solvent and product use, Tobacco combustion, pg.22,23
Ni	Tobacco combustion	2.7	μg/cigarette	GB 23 Table 3-15 Tier 2 emission factors for source category 2.D.3.i, 2.G Other solvent and product use, Tobacco combustion, pg.22,23
Zn	Tobacco combustion	2.7	μg/cigarette	GB 23 Table 3-15 Tier 2 emission factors for source category 2.D.3.i, 2.G Other solvent and product use, Tobacco combustion, pg.22,23
Cu	Tobacco combustion	5.4	μg/cigarette	GB 23 Table 3-15 Tier 2 emission factors for source category 2.D.3.i, 2.G Other solvent and product use, Tobacco combustion, pg.22,23
PCDD/F	Tobacco combustion	0.1	μg I-TEQ/ton tobacco	GB 23 Table 3-15 Tier 2 emission factors for source category 2.D.3.i, 2.G Other solvent and product use, Tobacco combustion, pg.22,23

Pollutant	Activity	Value	Unit	References
benzo(a) pyren	Tobacco combustion	0.111	g/ton tobacco	GB 23 Table 3-15 Tier 2 emission factors for source category 2.D.3.i, 2.G Other solvent and product use, Tobacco combustion, pg.22,23
benzo(b) fluoranthene	Tobacco combustion	0.045	g/ton tobacco	GB 23 Table 3-15 Tier 2 emission factors for source category 2.D.3.i, 2.G Other solvent and product use, Tobacco combustion, pg.22,23
benzo(k) fluoranthene	Tobacco combustion	0.045	g/ton tobacco	GB 23 Table 3-15 Tier 2 emission factors for source category 2.D.3.i, 2.G Other solvent and product use, Tobacco combustion, pg.22,23
Indeno (1.2.3-cd) pyren	Tobacco combustion	0.045	g/ton tobacco	GB 23 Table 3-15 Tier 2 emission factors for source category 2.D.3.i, 2.G Other solvent and product use, Tobacco combustion, pg.22,23
NMVOC	Wood preservation. Creosote preservative type	105	g/kg creosote	GB 23 Table 3-5 Tier 2 emission factors for source category 2.D.3.i, 2.G Other solvent and product use, Preservation of wood, Creosote preservative type, pg.17
benzo(a) pyren	Wood preservation. Creosote preservative type	1.05	mg/kg creosote	GB 23 Table 3-5 Tier 2 emission factors for source category 2.D.3.i, 2.G Other solvent and product use, Preservation of wood, Creosote preservative type, pg.17
benzo(b) fluoranthene	Wood preservation. Creosote preservative type	0.53	mg/kg creosote	GB 23 Table 3-5 Tier 2 emission factors for source category 2.D.3.i, 2.G Other solvent and product use, Preservation of wood, Creosote preservative type, pg.17
benzo(k) fluoranthene	Wood preservation. Creosote preservative type	0.53	mg/kg creosote	GB 23 Table 3-5 Tier 2 emission factors for source category 2.D.3.i, 2.G Other solvent and product use, Preservation of wood, Creosote preservative type, pg.17
Indeno (1.2.3-cd) pyren	Wood preservation. Creosote preservative	0.53	mg/kg creosote	GB 23 Table 3-5 Tier 2 emission factors for source category 2.D.3.i, 2.G Other solvent and product use, Preservation of wood, Creosote preservative type, pg.17
NMVOC	Manufacturing of shoes	0.06	kg/pair of shoes	GB 23 Table 3-16 Tier 2 emission factors for source category 2.D.3.i, 2.G Other solvent and product use, Other, Use of Shoes, pg.24
NMVOC	Fat. edible and non-edible oil extraction	1.57	g/kg seed	GB 23 Table 3-4 Tier 2 emission factors for source category 2.D.3.i, 2.G Other solvent and product use, Fat, edible and non-edible oil extraction, pg.16
PM2.5	Fat. edible and non-edible oil extraction	0.6	g/kg seed	GB 23 Table 3-4 Tier 2 emission factors for source category 2.D.3.i, 2.G Other solvent and product use, Fat, edible and non-edible oil extraction, pg.16
PM10	Fat. edible and non-edible oil extraction	0.9	g/kg seed	GB 23 Table 3-4 Tier 2 emission factors for source category 2.D.3.i, 2.G Other solvent and product use, Fat, edible and non-edible oil extraction, pg.16
TSP	Fat. edible and non-edible oil extraction	1.1	g/kg seed	GB 23 Table 3-4 Tier 2 emission factors for source category 2.D.3.i, 2.G Other solvent and product use, Fat, edible and non-edible oil extraction, pg.16

5.6.8.2. Source-specific uncertainties and time-series consistency

No specific source uncertainty is done for the sector.

5.6.8.3. Source-specific recalculations including changes made in response to the review process No recalculations were done in this category.

5.6.8.4. Source-specific planned improvements including those in response to the review process

The ERT recommended to include emissions estimates in the inventory from activities like Use of fireworks, Other product use (concrete additive, cooling lubricant, lubricant, pesticide and other industrial application of solvents in products) and Barbeque, which fall under the scope of NFR 2G and Glass wool enduction, Mineral wool enduction, Application of glues and adhesives, Underseal treatment and conservation of vehicles, Vehicles dewaxing and Other (preservation of seeds,...), which fall in the scope of NFR 2.D.3.i. The national inventory team has searched data and find out that data on concreate additive and pesticides exist, however data on Vehicles dewaxing and Other (preservation of seeds,...), use of fireworks are not available in the National statistics. Request for data on the slolvent use for aircrqft deicing are required from the two existing airports but data are not received yet. Activities like Glass wool enduction, Mineral wool enduction are not occuring. The improvement of this category will be carried out in the forthcoming Technical IPA project on implementation on air quality directives.

5.6.9. Food and beverages industry - NFR 2.H.2

This source category addresses NMVOC emissions from food and beverages manufacturing, except emissions from vegetable oil extraction.

5.6.9.1. Methodological issues

The Tier 2 approach has been applied. Both the activity data and the emission factors have been stratified according to the different techniques that occur in the country.

The following equation form Tier 2 approach has been used for calculating emissions from food and beverage industry:

$$E_{pollutant} = \sum\nolimits_{tehnologies} AR_{production, tehnology} \times EF_{tehnology, pollutant}$$

Where:

AR_{production, tehnology} = the production rate within this source category;

EF_{tehnology, pollutants} = the emission factor for this technology and these pollutants.

Activity Data

The activity data for this source category has been taken from the Statistical yearbook - chapter Industry, energy and construction for the period 1990-2004 and publication Industry in the Republic of North Macedonia for the period 2005-2022. The data on wine production for the period 1990-2004 on wine and spirits was presented in total and therefore a proportion was used to divide this type of product. Additionally, data on wine production was officially required from the Ministry of agriculture, forestry, and water supply, but they responded that they do not have such data available. They are revised available activity data for period 2007-2009 MAKSTAT database. Due to revised available

activity data for white wine produced since 2007 there are data for wine and white wine. The activity data for the period 1990-2006 for wine is for total wine produced (unspecified color). The animal feed is decreasing because of the decrease of the number of animals (see Agriculture chapter). The production of sugar varies during the reported period because there is only one major company dealing with sugar production. The company stopped with operation in 2015, so this process is not occurring since. Also, for period 2007-2022 activity data for roasted coffee are included. The activity data is presented in the following table. There were no available data for the years before 2007.

Table 160 Activity data for source category 2.H.2 - Food and beverage industry (Source Statistical yearbook (year) (1990-2004) and Industry in the Republic of North Macedonia (2005-2022)

Year	spirits/hL	beer/hL	wine/hL	Wine white / hL	Animal Feed/t	Margarine and solid cooking fat/t	Sugar/t	Meat. fish and poultry/t	Cakes. biscuits and breakfast cereals/t	Bread/t	Coffee /t
1990	13 100	958 224	1 296 900	NE	180 625	1 972	13 904	11 855	13 063	102 392	NE
1991	16 165	928 043	1 572 000	NE	167 137	1 972	8 624	10 921	13 328	86 892	NE
1992	21 708	860 843	2 111 000	NE	140 320	1 972	8 140	8 121	15 112	99 149	NE
1993	21 708	951 854	2 274 000	NE	143 034	1 972	6 677	7 128	12 602	85 379	NE
1994	23 710	724 974	2 347 290	NE	126 146	1 972	6 351	33 787	12 583	85 014	NE
1995	26 920	620 201	2 665 080	NE	126 583	1 972	7 205	29 375	12 308	84 901	NE
1996	40 040	622 223	3 963 960	NE	130 248	1 972	17 993	29 368	11 824	84 382	NE
1997	31 800	600 092	3 148 200	NE	105 754	1 972	35 183	27 800	11 426	83 817	NE
1998	24 790	578 212	2 454 210	NE	97 947	1 972	40 354	25 971	11 657	82 740	NE
1999	30 070	652 165	2 976 930	NE	97 946	1 972	43 039	26 512	12 296	81 184	NE
2000	27 820	659 829	2 754 180	NE	97 995	1 972	31 923	27 470	11 408	78 632	173
2001	43 900	622 181	4 346 100	NE	75 003	1 972	18 004	26 041	10 995	74 689	899
2002	37 960	637 894	3 758 040	NE	68 382	1 972	36 614	27 471	10 828	68 425	2686
2003	28 350	680 217	2 806 650	NE	61 474	1 972	33 334	29 835	10 454	58 606	2109
2004	12 424	717 496	516 000	NE	55 235	1 972	27 810	29 839	10 113	43 115	2600
2005	10 548	675 325	948 489	NE	77 025	1 734	36 815	28 264	8 051	45 654	3005
2006	11 831	669 648	703 005	NE	73 497	1 903	19 325	28 041	8 030	44 774	2931
2007	9 824	695 140	578 953	388 588	85 790	2 079	35 927	22 589	5 607	59 003	4 383
2008	7 608	702 382	707 271	436 981	81 198	2 240	43 731	26 156	6 938	65 124	4 365
2009	7 904	635 922	743 463	480 008	74 353	2 225	23 460	26 437	9 603	59 699	4 185
2010	11 284	631 371	661 793	401 546	72 434	2 387	37 998	28 644	25 419	62 492	4 338
2011	7 442	611 836	815 914	409 593	77 183	2 340	30 423	30 732	25 548	67 518	4 185
2012	10 341	633 621	591 291	457 824	62 695	2 228	21 414	35 473	30 144	68 723	4 214

Year	spirits/hL	beer/hL	wine/hL	Wine white / hL	Animal Feed/t	Margarine and solid cooking fat/t	Sugar/t	Meat. fish and poultry/t	Cakes. biscuits and breakfast cereals/t	Bread/t	Coffee /t
2013	11 548	617 124	686 841	599 049	46 983	2 433	22 916	35 686	31 181	60 127	4 405
2014	9 847	640 948	396 630	399 351	47 553	2 339	12 085	32 155	31 150	62 919	3 894
2015	10 848	656 672	605 404	500 017	45 553	2 328	NO	31 278	39 532	63 808	4 160
2016	12 481	672 487	602 187	460 461	40 563	2 118	NO	32 125	36 303	64 751	4 609
2017	11 582	705 497	367 020	397 953	48 348	2 374	NO	30 706	36 374	59 968	4 239
2018	13 082	736 062	565 799	462 320	45 117	2 324	NO	34 916	37 656	57 528	4 306
2019	13 269	738 396	522 317	388 943	47 623	2 656	NO	26 947	37 495	56 670	4 344
2020	11 649	662 360	568 586	374 166	46 576	2 596	NO	25 421	38 144	47 119	4 100
2021	13 854	696 215	477 946	361 482	45 084	2 685	NO	27 310	36 269	45 266	4 258
2022	14 574	667 352	404 842	439 903	37 286	2 922	NO	24 999	31 312	43 986	4 096

Emission factors

The emission factors for estimation of NMVOC emissions are presented in the following table.

Table 161 Emission factors for source category 2.H.2 - Food and beverages industry

Pollutant	Value	Unit	References
NMVOC	15	kg/hL alcohol(spirits)	GB 2023, 2.H.2 Food and beverages industry, Table 3-28, pg. 23
NMVOC	35	g/hL beer	GB 2023, 2.H.2 Food and beverages industry, Table 3-27, pg. 22
NMVOC	80	g/hL wine	GB 2023, 2.H.2 Food and beverages industry, Table 3-24, pg. 21
NMVOC	35	g/hL white wine	GB 2023, 2.H.2 Food and beverages industry, Table 3-26, pg. 22
NMVOC	1	kg/Mg animal feed	GB 2023, 2.H.2 Food and beverages industry, Table 3-22, pg. 20
NMVOC	10	kg/Mg product (Margarine and solid cooking fats)	GB 2023, 2.H.2 Food and beverages industry, Table 3-21, pg. 19
NMVOC	10	kg/Mg sugar	GB 2023, 2.H.2 Food and beverages industry, Table 3-20, pg. 19
NMVOC	0.3	kg/Mg product (meat, fish and poultry)	GB 2023, 2.H.2 Food and beverages industry, Table 3-19, pg. 18
NMVOC	1	kg/Mg product (cakes, biscuits and breakfast cereals)	GB 2023, 2.H.2 Food and beverages industry, Table 3-18, pg. 18

Pollutant	Value	Unit	References
NMVOC	4.5	kg/Mg bread	GB 2023, 2.H.2 Food and beverages industry, Table 3-14, pg. 16
NMVOC	0.55	kg/Mg beans (roasted coffee)	GB 2023, 2.H.2 Food and beverages industry, Table 3-23, pg. 20

5.6.9.2. Source-specific uncertainties and time-series consistency

A quantitative uncertainty analysis has not yet been carried out to the Macedonian inventory, but it is scheduled for the future. Source category specific information on uncertainties will be added when the results are available. The trends of the food production are variable due to the change of the methodology in the statistics, as well as due to the unstable regime of the major food installations.

5.6.9.3. Source-specific QA/QC and verification

Standard QA/QC procedures were carried out for this source category, i.e. activity data were checked for plausibility and time-series consistency; emission data was checked for completeness and for consistency between the calculation files, NFR tables and the IIR.

5.6.9.4. Source-specific recalculations including changes made in response to the review process No recalculations were done in this category.

5.6.9.5. Source-specific planned improvements including those in response to the review process

No planned improvements in this category.

5.6.10. Wood processing – NFR 2.I

This source category is only important for particulate emissions. The emissions from this source category however are less than 1% of the national emissions for particulates.

5.6.10.1. Methodological issues

The simplified Tier 1 methodology for emission calculation has been used. Namely, the quantity of activity data is multiplied with the appropriate emission factor.

Activity data

The input data for this source category is the quantity of different type of final products. These data have been taken from the Statistical Yearbooks of the Republic of North Macedonia for the period 1990-2020[22] and the publication Industry in the Republic of North Macedonia for the period 2005-2015[28], and data form MAKSTAT database for period 2016-2022 [29].

Table 162 Activity data for source category 2.I - Wood processing

Year	Wood processed [Mg]	Year	Wood processed [Mg]	Year	Wood processed [Mg]
1990	66 889	2001	16 882	2012	19 251
1991	52 422	2002	10 015	2013	14 211
1992	46 790	2003	19 913	2014	14 414
1993	44 454	2004	24 263	2015	11 496
1994	40 402	2005	15 509	2016	10 098
1995	29 144	2006	21 866	2017	10 660
1996	27 210	2007	15 173	2018	7 698

Year	Wood processed [Mg]	Year	Wood processed [Mg]	Year	Wood processed [Mg]
1997	23 188	2008	12 863	2019	10 102
1998	17 048	2009	4 429	2020	9 701
1999	22 568	2010	14 225	2021	9 816
2000	18 173	2011	11 986	2022	10 136

Emission factors

Emission factor for estimation of TSP have been taken from GB 2023 and they are presented in the table below.

Table 163 Emission factors for source category 2.I Wood processing

Pollutant	Value	Unit	References
TSP	1	kg/Mg wood products	GB 2023 Table 3.1 Tier 1 emission factors for source category 2.1 Wood processing

5.6.10.2. Source-specific uncertainties and time-series consistency

No source specific uncertainty was done for this sector.

5.6.10.3. Source-specific QA/QC and verification

Standard QA/QC procedures were carried out for this source category, i.e. activity data was checked for plausibility and time-series consistency; emission data was checked for completeness and for consistency between the calculation files, NFR tables and the IIR.

5.6.10.4. Source-specific recalculations including changes made in response to the review process No recalculations were done in this category.

5.6.10.5. Source-specific planned improvements including those in response to the review process No planned improvements in this sector

5.6.11. Consumption of POPs and heavy metals – NFR 2.K

This source category is only important for PCB and Hg. The emissions in this category were calculated due to ERT recommendation.

5.6.11.1. Methodological issues

The simplified Tier 1 methodology for emission calculation has been used. Namely, the quantity of activity data – population is multiplied with the appropriate emission factor.

Activity data

The input data for this source category is population data. Population data for the source category 2.D.3.e – Degreasing, is presented in Table 160.

Emission factors

Emission factor for estimation of PCB and Hg have been taken from GB 2023 and they are presented in the table below.

Table 164 Emission factors for source category 2.K- Consumption of POPs and heavy metals

Pollutant	Value	Unit	References
РСВ	0.1	g/capita	GB 2023 Table 3-1, Tier 1, 2.K- Consumption of POPs and heavy metals pg.6
Hg	0.01	g/capita	GB 2023 Table 3-1, Tier 1, 2.K- Consumption of POPs and heavy metals pg.6

5.6.11.2. Source-specific uncertainties and time-series consistency

No source specific uncertainty was done for this sector.

5.6.11.3. Source-specific QA/QC and verification

Standard QA/QC procedures were carried out for this source category, i.e. activity data were checked for plausibility and time-series consistency; emission data was checked for completeness and for consistency between the calculation files, NFR tables and the IIR.

5.6.11.4. Source-specific recalculations including changes made in response to the review process No recalculations were done in this category.

5.6.11.5. Source-specific planned improvements including those in response to the review process Due to high uncertainty of the Tier 1 methodology, possibility the use higher tier level will be investigated if data from the POPs inventory which is developed by the POPs office in MEPP can be use for this purpose.

•

AGRICULTURE

6. AGRICULTURE (NFR 3)

6.1. Sector overview

The Agriculture sector is a major source category for ammonia emissions. 90% of the total national emissions of NH₃ are emitted from the agricultural sector.

In the Macedonian national inventory emissions from emissions from several NFRs are not reported due to not available activity data, but more detail explanation is given below.

6.2. General description

Methodology

In general, a simple Tier 1 methodology is used, multiplying activity data for each source category with an applied emission factor. The methodology of selection of emission factors in the manure management source category is described in detail below. Emission factors from EMEP Guidebook 2023 were mostly used for calculation of emissions for 3B categories in this sector. Older versions of Guidebook are use for calculation of emissions in 3D categories.

Completeness

In the table below NFR categories covered in the Agriculture sector for 2022 are presented, which are not included in this sector and for which appropriate notation keys are used.

Table 165 NFR categories covered in Agriculture sector for 1990-2022

	NFR category	Completeness
3B1a	Manure management - Dairy cattle	٧
3B1b	Manure management - Non-dairy cattle	V
3B2	Manure management – Sheep	V
3B3	Manure management - Swine	٧
3B4d	Manure management – Goats	V
3B4e	Manure management – Horses	٧
3B4gi	Manure management - Laying hens	٧
3B4gii	Manure management - Broilers	٧
3B4giii	Manure management - Turkeys	٧
3B4giv	Manure management - Other poultry	٧
3Da1	Inorganic N-fertilizers (includes also urea application)	٧
3B4f	Manure management - Mules and asses	NE
3B4a	Manure management – Buffalo	IE
3B4h	Manure management - Other animals (please specify in IIR)	NO
3Da2a	Animal manure applied to soils	٧
3Da2b	Sewage sludge applied to soils	NE
3Da2c	Other organic fertilizers applied to soils (including compost)	NA
3Da3	Urine and dung deposited by grazing animals	٧
3Da4	Crop residues applied to soils	NA

	NFR category	Completeness
3Db	Indirect emissions from managed soils	NA
3Dc agricul	Farm-level agricultural operations including storage, handling and transport of tural products	٧
3Dd	Off-farm storage. handling and transport of bulk agricultural products	NA
3De	Cultivated crops	٧
3Df	Use of pesticides	NO
3F	Field burning of agricultural residues	NO
31	Agriculture other (please specify in the IIR)	NO
3B4h	Manure management - Other animals (please specify in IIR)	NO

- **3.B.4.f**: Mules and asses: No data were received for number of mules and asses in the reporting period upon request sent to the state statistical office (NE).
- **3.B.4.a:** Buffalos: only historic data are available. Buffalos are included in the Other cattle category (3.B.1.b), as buffalos are bovines and no data for buffalo is available from 2007 onwards (-> time series consistency). The NH₃ EF for buffalos and other cattle (solid) is very similar.
- **3.B.4.h**: Other animals: The inventory includes all animals provided in the statistical review of North Macedonia. No additional animal categories are relevant for North Macedonia (NO).
- **3.D.a.2.a:** Animal manure applied to soils: Emissions are included in sector 3.D, as calculations follow the tier 1 approach. Therefore, the notation key IE is used for this sector. NH₃ emissions of source category 3.D.a.2.a animal manure applied to soils have been reported from submission 2017 onwards.
- **3.D.a.2.b:** Sewage sludge applied to soils: This source is not estimated (NE). Activities (tons of sewage sludge annually spread) are not available. According to our investigations there are available data on sewage sludge. In the SSO database thre are available data. Wastewater treatment plants are also producing sewage sludge, but according to information that we have gained up to now sewage sludge has been used in Agriculture.
- **3.D.a.2.c:** The EMEP/EEA Guidebook 2013 does not provide methodologies and emission factors for this source category. Thus, for other organic fertilizers applied to soils (including compost) the notation key NA is reported.
- **3.D.a.3**: Urine and dung deposited by grazing animals: Emissions are included in sector 3.D as calculations follow the Tier 1 approach. Therefore, notation key IE is used. NH₃ emissions of source category 3.D.a.3 Urine and dung deposited by grazing animals have been reported from submission 2017 onwards.
- **3.D.a.4:** The EMEP/EEA Guidebook 2023 provide methodologies and emission factors for this source category for ammonia. Thus, emissions from Crop residues applied to soils are reported as NA. It is planned to calculate these emissions for the next reporting round or use NE for NH₃ if calculations are not completed in the IPA II project for the next submission.

- **3.D.b**: The EMEP/EEA Guidebook 2023 does not provide methodologies and emission factors for calculating emissions resulting from the deposition of N emitted from managed soils. Thus, for indirect emissions from managed soils NA is reported.
- **3.D.d**: The EMEP/EEA Guidebook 2023 does not provide methodologies and emission factors for this source category. Thus, for Off-farm storage, handling and transport of bulk agricultural products NA is reported.
- **3.F**: NO is reported for source category 3F Field burning. The reason as required by the Stage 3 review for agriculture [3] is the following. According to the NATIONAL implementation plan of reduction and elimination of the persistent organic pollutants in the Republic of Macedonia, issued by the Ministry of environment and physical planning in 2004 Table 1.3: The state of the production and use of POPs substances in the Republic of Macedonia, HCB is not used in the Republic of Macedonia.

Moreover, according to National plan for ratification of the three lats protocols, it is stated HCB was widely used as a pesticide to protect the seeds of onions and sorghum, wheat, and other grains against fungus until 1965.

3.1: Agriculture other, does not occur (NO).

6.3. Manure management NFR 3.B

6.3.1. Methodological issues

The Tier 1 default approach following the GB 2013 and the GB 2016 has been used.

Emission factors for NOx, NMVOC and PM have been obtained from EMEP/EEA Air Pollutant GB 2023. Separate default Tier 1 EFs are provided for slurry and litter-based manure management systems to be multiplied with the animal numbers of the appropriate livestock categories. The manner of data filing as well as analysis of provided information for the selection of proper emission factors for different substances is presented below.

6.3.1.1. Activity data and background information on the activity data

The input data in this sub-sector is the number of registered heads of each domestic animal species. All activity data is derived from the Statistical Yearbooks for period 1990-2006 [22] and Publication Livestock prepared by the State Statistical Office for the period 2007-2015 [33] and MAKSTAT database for activity data for 2016-2022 [33]. The numbers per livestock category are presented in Table 166. The number of different categories of poultry is presented in Table 167.

Table 166 Domestic livestock population and its trend 1990–2022

Year	Dairy	Non-diary	Total Swine	Fattening pigs	Sows	Sheep	Goats	Horses
1990	122 318	166 458	178 537	154 359	24 178	2 297 115	252 904	66 282
1991	120 476	163 361	170 975	145 973	25 002	2 250 549	245 466	65 155
1992	121 097	165 001	173.006	147 479	25 527	2 351 408	238 027	64 576
1993	121 614	159 835	184 920	151 605	33 315	2 458 648	230 589	61 748
1994	122 006	160 351	171 571	138 809	32 762	2 466 099	223 151	61 797
1995	122 419	161 835	175 063	143 672	31 391	2 319 905	215 712	61 733
1996	129 223	166 403	192 396	161 365	31 031	1 813 895	208 274	66 479
1997	130 519	159 817	184 293	148 802	35 491	1 631 034	200 836	65 869

1999	126 536	144 336	226 047	190 933	35 114	1 288 733	185 959	57 152
2000	126 371	139 229	204 135	173 006	31 129	1 250 686	178 520	56 486
2001	128 218	137 653	189 293	160 794	28 499	1 285 099	171 082	45 638
2002	127 135	132 437	196 223	164 056	32 167	1 233 830	163 644	41 775
2003	118 325	142.217	179 050	143 557	35 493	1 239 330	156 205	42 883
2004	118 872	136 496	158 231	131 992	26 239	1 432 369	148 767	40 391
2005	115 485	133 174	155 753	128 940	26 813	1 244 000	141 329	39 651
2006	120 682	135 157	167 116	137 102	30 014	1 248 801	133 890	40 553
2007	121 005	132 761	255 146	209 641	45 505	817 536	126 452	31 065
2008	125 004	128 469	246 874	210 106	36 768	816 604	133 017	30 936
2009	109 858	142 662	193 840	164 796	29 044	755 356	94 017	29 418
2010	119 060	140 827	190 552	161 346	29 206	778 404	75 708	26 658
2011	136 926	128 373	196 570	171 412	25 158	766 631	72 777	25 415
2012	123 392	127 848	176 920	152 256	24 664	732 338	63 585	21 676
2013	128 677	109 656	167 492	140 768	26 724	731 828	75 028	20 682
2014	126 762	114 845	165 053	141 542	23 511	740 457	81 346	19 371
2015	124 194	129 248	195 443	174 586	20 857	733 510	88 064	18 784
2016	125 243	129 525	202 758	174 087	28 671	723 295	101 669	19 263
2017	122 604	132 432	202 197	175 623	26 574	724 555	107 466	17 951
2018	129 450	126 731	195 538	171 809	23 729	726 990	117 447	10 041
2019	111 147	106 643	135 770	118 814	16 956	684 558	87 581	8 952
2020	107 721	114 490	164 074	145 679	18 395	630 634	95 008	9 154
2021	98 217	79 441	186 146	165 815	20331	633281	75753	11140
2022	100 242	64 509	182 604	161 147	21 457	646 488	80 186	10 659
Trend 1990- 2022	-18%	-61%	2,27%	4%	-11%	-72%	-68%	-84%

Table 167 Domestic poultry and its trend 1990–2022

Year	Laving bons	Busileus	Livestock category – Population size [heads] *					
Year	Laying hens	Broilers	Ducks	Geese	Turkeys	Total Poultry		
1990	5 515 140	101 653	58 888	15 264	38 036	5 728 981		
1991	4 392 197	80 955	46 898	12 156	30 291	4 562 497		
1992	4 136 947	76 251	44 172	11 449	28 531	4 297 350		
1993	4 228 758	77 943	45 153	11 703	29 164	4 392 721		
1994	4 510 147	83 129	48 157	12 482	31 105	4 685 021		

Vaan	Lauden baua	Ducilous	Lives	Livestock category – Population size [heads] *						
Year	Laying hens	Broilers	Ducks	Geese	Turkeys	Total Poultry				
1995	4 697 726	86 587	50 160	13 001	32 398	4 879 873				
1996	3 235 355	59 633	34 546	8 954	22 313	3 360 801				
1997	3 152 343	58 103	33 659	8 724	21 741	3 274 570				
1998	3 214 141	59 242	34 319	8 895	22 167	3 338 764				
1999	3 102 875	57 191	33 131	8 587	21 399	3 223 184				
2000	3 574 763	65 889	38 170	9 893	24 654	3 713 369				
2001	2 647 004	48 789	28 263	7 326	18 255	2 749 637				
2002	2 407 615	44 376	25 707	6 663	16 604	2 500 966				
2003	2 327 131	42 893	24 848	6 441	16 049	2 417 362				
2004	2 623 573	48 357	28 013	7 261	18 094	2 725 298				
2005	2 519 329	46 435	26 900	6 972	17 375	2 617 012				
2006	2 488 827	45 873	26 575	6 888	17 165	2 585 327				
2007	2 115 866	80 742	35 131	11 004	21 151	2 263 894				
2008	2 173 346	9 717	22 656	4 082	16 254	2 226 055				
2009	2 041 098	34 949	23 658	3 182	15 003	2 117 890				
2010	1 951 276	27 235	6 982	4 652	4 707	1 994 852				
2011	1 853 176	11 862	68 743	4 225	6 253	1 944 259				
2012	1 715 180	30 698	15 670	4 495	10 254	1 776 297				
2013	1 623 130	548 617	13 558	7 143	9 102	2 201 550				
2014	1 884 289	26 492	13 790	5 687	9 621	1 939 879				
2015	1 423 841	311 809	15 814	2 094	7 587	1 761 145				
2016	1 705 948	97 322	25 416	10 829	26 254	1 865 769				
2017	1 770 504	20 456	27 257	8 782	13 174	1 840 173				
2018	1 736 208	25 641	40 222	8 956	17 260	1 828 287				
2019	1 385 743	120 363	34 611	8 841	12 531	1 562 089				
2020	1 482 348	101 268	31 900	14 306	13 640	1 643 462				
2021	1 235 894	97 181	120 580	11 227	19 143	1 484 025				
2022	1 367 092	124 332	46 036	10 971	13 502	1 561933				
Trend 1990– 2022	-75%	22%	-22%	-28%	-68%	-72%				

Official data sets of the period 1990–2006 and from 2007 onwards are not fully consistent. In 2007, a new census on agriculture was introduced [36] leading to more accurate animal numbers. No census for agriculture was conducted afterwards. Census was planned to be conducted during last year, however due to limited human and financial resources it was postponed with no define date.

The 2007 census was interview based (interviewers personally visited all farms) and provides a full coverage of the country.

The annual animal accountings in the years between are based on samples of about 5000 farms. The total farm number of North Macedonia is about 90000. In general, it is distinguished between individual farms (which reflect most farms) and business entities (less than 200 registered).

The annual accountings were made as of the 31st of December until the year 2014, but from 2015 onwards they are made as of the 20th of November.

A solution could not be found on how to improve inconsistency between these two datasets (1990-2006 and from 2007 onwards), especially for sheep, goats and pigs the time series shows significant inconsistencies.

The overall livestock population continuously decreased, especially for sheep, goats, and horses as well as poultry.

Cattle numbers

For 1990-2006 national statistics include dairy, other cows and heifers in calve in one category "cows". Activity data for dairy cows was not made available until this reporting period.

Regarding the relatively small number of calves and young cattle, compared to the cattle older than 2 years (including dairy cattle that the share dairy/non-dairy is in line with the data of neighboring countries of that region and that the marked is very volatile) – many calves are imported.

There is no specific tradition in animal breeding in North Macedonia. The quality of the genetic pool of the domestic livestock is not good enough for high yield and quality production. Thus, for the replacement of animals in milk, meat and pork production predominantly young animals are imported from abroad (no domestic breed is taken).

The small calve number in the official statistics is since (especially male calves) are slaughtered very early (between 2 and 12 months). In the veterinarian register, all born animals have to be registered within a period of 7 days. This is the reason why the livestock balances show a significant higher number of calves than outlined in the official statistics.

Dairy cattle

Increased production of milk is responsible for the increased husbandry of dairy cattle -138% from 1990 to 2022).

Non-dairy cattle

Reduced rent ability of beef production is responsible for the decrease of Non-dairy cattle numbers by 61% between 1990 and 2022 due to the reduced number of heifers in calf and other cattle.

Pig numbers

Pig statistics from 1990-2006 are not fully consistent with the official numbers from 2007 onwards. A consistent time series had to be established. For the years 1990 to 2006, the fattening pig number has been derived from the difference of sow number (including boars) and total swine number 1990-2006.

In North Macedonia total swine production increased by 2,27% between 1990 and 2022, mainly due to increased production of fattening pigs.

Sheep

Activity data for the whole time series are available in the official statistics. There are time series inconsistencies in animal numbers and milk production 1995-1996 and 2006-2007. No solution could be found. Inconsistencies are due to different methodologies of accounting. The main reason for the decline in sheep numbers (-72%) is that most of the sheep herds are owned by small individual businesses which are not profitable anymore.

Goat numbers

No official goat numbers were published before 2007. Within a meeting with experts of the statistical office data for the period 2000-2007 from the MAKSTAT data base were provided. For the years before an official request has been made for the use of non-published data, and only 1999 data has been provided. For the derivation of consistent time series for 1990-1998 the average shares of the years 2007-2015 have been used. Goat numbers decreased by -68% between 1990 and 2022, because in the last century husbandry of goats was forbidden as it would curb the formation of karst. The number of goats has increased in period 2012-2018 but decreasing trend appears again due to fact higher migration from rural to urban places.

Horses

Horse numbers show a decreasing trend since 1990 (-84%). In the past horses were used for means of locomotion in rural areas, but the purpose of horses changed, and more and more people are now living in the cities and less horses are needed.

Mules and asses

Regarding information from the veterinary institute, horse category does not include mules and assess. No data on mules and assess were made available in the reporting period (NE).

Poultry number

Before 2007, only total poultry number is available. An official request has been made for the use of non-published data of laying hens 1990-2006. Data were received by the statistical office and used in the calculations. For the derivation of consistent time series of broilers, geese, ducks and turkeys for 1990-2006 the average shares of the years 2007-2010 have been used. The time series of laying hens has been validated with annual total egg production and annual egg numbers per hen.

Total poultry number decreased by 72% from 1990 to 2022, mainly due to declining numbers of laying hens as a result of a reduced egg production in North Macedonia.

Animal manure management system distribution

During the inventory preparation for submission in 2016, first investigations on management practices commonly applied in the Macedonian agriculture have been made. Based on expert judgments and information of big IPPC installations within pig and poultry husbandry a distinction between slurry and solid systems could be made for each animal category. Since then, the same distinction between systems has been used.

The following expert judgment (REF) has been provided:

Cattle husbandry

The cattle husbandry is mostly in traditional holdings – 97% of all farms in North Macedonia are small scale farms with up to 20 cows. In the past 25 years, the number of bigger holdings is decreasing and now there are only few farms with more than 100 dairy cows. The typical systems used in dairy cattle husbandry are small stalls with solid manure system, tied housing system with no outdoor loafing areas. Some of the bigger farms (more than 50 cattle) have changed from tied stall to free stall system, solid manure, and outdoor loafing areas. The milking system is mechanical with separate milking parlor in the bigger farms. The other category of cattle, which has a major part in the cattle husbandry in North Macedonia, is the cow-calf system (suckling cows). Where the cows are kept free on pasture and mountains and the breeders are using only the calves for meat production. This type of breeding is strictly traditional with the local breed Busha. In the milking sector, dominating breed is Holstein Friesian, with small percentage of Simmental breed and the rest of the cattle breeds are within negligible numbers. Although there are several attempts in the past decade for establishing bigger farms, there is no visible trend for creating dairy farms with large number of animals in North Macedonia. Based on this expert judgment we decided to use the EMEP/EEA default NH₃ and NO Tier 1 EFs for solid systems for all cattle categories.

Pasturing of cattle

Pastured system is mostly present in the cow-calf system; explained above. The rest of the farmers are rarely using pasture for dairy cattle and dairy cattle are kept indoors during the whole year. There are some practices where the cows from the whole village are pastured on the same pasture during the summer months of the year. However, there are no exact numbers available for presenting the percentage of farms that are using pasture in their management.

Based on this expert judgment and discussions with agriculture experts it was decided to apply the solid NH₃ and NO EFs for all cattle.

Swine

For IPPC installations (big pig farms), the national IPPC experts provided the following information: the number of animal places, the animal number produced per farm for 2014 and the number of days the animals are alive before being slaughtered for 2014.

Based on this data, it was possible to calculate the annual average animal population held in these seven big pig farms. The result was that about 30% of BC's pigs (mostly fattening pigs) were held in these farms in 2014. From the previous meeting we know that these farms use liquid systems. The situation in 2018 is similar so no changes to the distribution of type of system are changed.

Now it had to be clarified which kind of systems are usually applied for the rest of pigs held in smaller business entities and individual farms.

Additional information from the veterinary agency that also the small pig farms usually practice liquid manure systems; the manure is stored in septic tanks. Farmers have an agreement with someone else that uses a tank truck to collect the manure or use the manure for fertilization of their own agricultural land.

National experts of the Ministry of Agriculture confirmed the assessment of the veterinary agency of North Macedonia. Based on this expert judgment we decided to use the EMEP/EEA default NH₃ and NO EFs for liquid systems for all swine categories.

Poultry

In North Macedonia, only laying hens are kept in big poultry farms. Broilers are mainly imported from abroad. Data from IPPC investigations (big poultry farms) showed that the solid factor is the appropriate for all hens (conservative approach). The national experts of the Ministry of Agriculture within an expert meeting confirmed this approach during the mission.

EMEP/EEA Tier 1 NH_3 and NO_X emission factors of all other animal categories do not distinguish between solid and liquid systems.

6.3.1.2. Emission factors

Tables 168 and 169 provide emission factors taken from the EMEP EEA GB 2023 version and for NH₃ for each livestock category. These factors have been used for the estimation of NO_X NMVOC and NH₃ emissions. For NMVOC and cattle, the average mean of both EFs (NMVOC EF with and EF without silage feeding) has been used (for details see description below).

Table 168 NH₃ emission factors for source categories 3.B - Manure management and 3.D - Agricultural Soils

		NH ₃		
NFR code	Housing, storage, yard	Manure application*	Grazing**	
	kg AAP-1 a-1	kg AAP-1 a-1	kg AAP-1 a-1	
3B1a Dairy cattle	16.1	6.0	4.4	
3B1b Non-dairy cattle	5.7	2.2	2.0	
3B2 Sheep	0.4	0.2	0.8	
3B3 Swine-fattening pigs	3.7	2.8	0.0	
3B3 Swine-sows	12.5	5.2	0.0	
3B4d Goats	0.4	0.2	0.8	
3B4e Horses	7.0	2.7	6.1	
3B4gi Laying hens	0.32	0.15	0.0	
3B4gii Broilers	0.13	0.04	0.0	
3B4giii Turkeys	0.56	0.34	0.0	
3B4giv Other poultry (ducks)	0.45	0.20	0.0	
3B4giv Other poultry (geese)	0.30	0.05	0.0	
Reference	GB 2023 - Table 3.2 Default Tier : manure management	1 EF (EF NH $_3$) for calculation c	of NH₃ emissions from	

^{*}reported under source category 3.D.a.2

^{**} reported under source category 3.D.a.3

Table 169 NOx and NMVOC emission factors for source category 3B - Manure management

	Pollut	ants	
NFR code	NOx	NMVOC	
	kg AAP-1 a-1	kg AAP-1 a-1	
3B1a Dairy cattle	0.752	13.4195	
3B1b Non-dairy cattle	0.217	6.252	
3B2 Sheep	0.012	0.169	
3B3 Swine-fattening pigs	0.002	0.551	
3B3 Swine-sows	0.005	1.704	
3B4d Goats	0.012	0.542	
3B4e Horses	0.250	7.781	
3B4gi Laying hens	0.014	0.165	
3B4gii Broilers	0.027	0.108	
3B4giii Turkeys	0.027	0.489	
3B4giv Other poultry (ducks)	0.002	0.489	
3B4giv Other poultry (geese)	0.005	0.489	
Reference	GB 2023 updated July 2015 - Table 3.3 Default Tier 1 EF for NO	GB 2023- Table 3-4 Default Tier 1 EF for NMVOC	

Emissions of particulate matter (PM) occurring from animal husbandry were calculated with the EMEP/EEA Tier 1 methodology provided in the EMEP/EEA Guidebook 2023 (related 14 Sep 2023 Published 02 Oct 2023). The Tier 1 methodology multiplies average animal numbers with the particular default emission factors listed in the following table:

Table 170 TSP, PM10 and PM2.5 emission factors for source category 3.B - Manure management

NFR code	TSP	PM10	PM2.5	Reference
NFK code	kg/capita	kg/capita	kg/capita	кетегепсе
3B1a Dairy cattle	1.38	0.63	0.41	GB 2023 updated July 2015 - Table 3.5 Default Tier 1 estimates of EF for particle emissions from animal husbandry (housing).
3B1b Non-dairy cattle	0.59	0.27	0.18	GB 2023 updated July 2015 - Table 3.5Default Tier 1 estimates of EF for particle emissions from animal husbandry (housing).
3B2 Sheep	0.14	0.06	0.02	GB 2023 updated July 2015 - Table 3.5 Default Tier 1 estimates of EF for particle emissions from animal husbandry (housing).
3B3 Swine- fattening pigs	1.05	0.14	0.006	GB 2023 updated July 2015 - Table 3.5 Default Tier 1 estimates of EF for particle emissions from animal husbandry (housing).
3B3 Swine- sows	0.62	0.17	0.01	GB 2023 updated July 2015 - Table 3.5 Default Tier 1 estimates of EF for particle emissions from animal husbandry (housing).
3B4d Goats	0.14	0.06	0.02	GB 2023 updated July 2015 - Table 3.5 Default Tier 1 estimates of EF for particle emissions from animal husbandry (housing).
3B4e Horses	0.48	0.22	0.14	GB 2023 updated July 2015 - Table 3.5 Default Tier 1 estimates of EF for particle emissions from animal husbandry (housing).

NFR code	TSP	PM10	PM2.5	Reference
NFK Code	kg/capita	kg/capita	kg/capita	Reference
3B4gi Laying hens	0.19	0.04	0.003	GB 2023 updated July 2015 - Table 3.5 Default Tier 1 estimates of EF for particle emissions from animal husbandry (housing).
3B4gii Broilers	0.04	0.02	0.002	GB 2023 updated July 2015 - Table 3.5 Default Tier 1 estimates of EF for particle emissions from animal husbandry (housing).
3B4giii Turkeys	0.11	0.11	0.02	GB 2023 updated July 2015 - Table 3.5 Default Tier 1 estimates of EF for particle emissions from animal husbandry (housing).
3B4giv Other poultry (ducks)	0.14	0,14	0.02	GB 2023 updated July 2015 - Table 3.5 Default Tier 1 estimates of EF for particle emissions from animal husbandry (housing).
3B4giv Other poultry (geese)	0.24	0.24	0.03	GB 2023 updated July 2015 - Table 3.5 Default Tier 1 estimates of EF for particle emissions from animal husbandry (housing).

NMVOC emission factors

Default Tier 1 emission factors distinguish between feeding with and without silage for dairy cows, other cattle, sheep, goats, horses and mules and asses (GB 2023, Table 3-4).

The following information from the Veterinary institute has been received on the feeding with silage.

"Feeding with silage is quite common in North Macedonia among farm animals. Especially during the winter period - to my knowledge (there is no exact data analysis for the time), at least half of the year the farmers are using silage as feed. The composition of silage is dominantly consisted of maize, alfalfa, clover and grains. This type of feed is especially used for cattle feeding."

According to the information received, the following was decided:

- For cattle to use the average mean of both EF with, and EF without silage feeding
- For all other animals to use the EF without silage feeding

6.3.2. Source-specific uncertainties and time-series consistency

For the first time a quantitative uncertainty, analysis has been carried out for the Macedonian air pollutant emission inventory and was submitted in 2017. The 2015 Livestock Survey derived uncertainties of activity data, with certain adjustments made regarding the survey non-response rate. The errors are calculated as relative errors. All calculations were made with the SAS statistical software package. Uncertainties of emission factors were based on the GB 2013 and assumption of experts.

The following table presents combined uncertainties for emissions as well as uncertainties for activity data and the EFs for sector 3.B Manure Management according to GB 2013.

Table 171 Uncertainties of activity data, emission factors and emissions for NFR 3.B

Categories		NH3 Emissions	NOx Emissions	NMVOC Emissions	PM2.5 Emissions	EF NH3	EF NOx	EF NMVOC	EF PM2.5
3.B.1	Cattle	+/-125.1	+/-40.3	+/-40.3	+/-200.1	+/-125%	+/-40%	+/-40%	+/-200%
3.B.2	Sheep	+/-125.4	+/-41.3	+/-41.3	+/-200.3	+/-125%	+/-40%	+/-40%	+/-200%
3.B.3	Swine	+/-125.1	+/-40.5	+/-40.5	+/-200.1	+/-125%	+/-40%	+/-40%	+/-200%
3.B.4	Other Livestock	+/-125.4	+/-41.2	+/-41.2	+/-200.2	+/-125%	+/-40%	+/-40%	+/-200%
		Activity Data				Relative errors			

Categories	NH3 Emissions	NOx Emissions	NMVOC Emissions	PM2.5 Emissions	EF NH3	EF NOx	EF NMVOC	EF PM2.5				
Animal Population	on – Cattle			+/- 5.3%								
Animal Population	Animal Population – Sheep					+/-10.2%						
Animal Population	Animal Population – Swine					+/-6.1%						
Animal Population	on – other Live	+/-10.0%										

^{*}Note: uncertainties of emissions are combined uncertainties

A solution could not be found on how to improve inconsistency between these two datasets (1990-2006 and from 2007 onwards), especially for sheep, goats and pigs the time series shows significant inconsistencies. Statistical methods have been used for improvement of time consistency already described above.

Concerning the time series consistency, there is a dip in the number of broilers and jumps in between 2013 and 2015. According to the opinion of the Statistical office, the number of broilers in the business farm is variable while the number of broilers in the individual farms is mostly constant. The dips and jumps are due to the opening of new farms, which may be connected to the market prices. Concerning the jump in pig's number in 2007 and 2008, we have asked the MAFWS for the reason, but no explanation was provided. It is assumed that economic reasons-market prices are behind this jump too.

6.3.3. Source-specific QA/QC and verification

The following sector specific QA/QC procedures have been carried out:

Activity data

- Consistency of time series: plausibility checks of dips and jumps for which requests on reasons are send to relevant institutions;
- Comparison with time series of previous year. Explanation of revisions are done only if jumps or dips appeared;
- Consistency checks of sub-categories with totals like in case of poultry with sum of all subcategories.

Emission factors

Default EFs were used

Results (emissions)

- Assessment of recalculation differences: plausibility checks, explanation
- Documentation in calculation sheets and IIR.
- Livestock emission excel sheet contains sheets for cross checking of animal number with production of milk, eggs and number of calves in the case of cattle numbers.

6.3.4. Source-specific recalculations including changes made in response to the review process

Recalculations in this sector were implemented due to the use of Emission factors from 2023 Guidebook.

6.3.5. Source-specific planned improvements including those in response to the review process

The main issue of use of higher Tier methodology for this sector remains. It is planned to make improvement in the upcoming IPA project due to limitation of expertise to proceed with Tier 2 methodology, according to recommendation given in the last stage 3 Review conducted in 2022. The higher Tier method was implemented by IIASA in the frame of EU 4 Green project for some categories in agriculture as recommended by the Stage 3 review for the agriculture carried out in 2023 [3]. The National team is also planning use of TAEIX expert mission for use of higher Tier methods in this sector. Improved emissions will be reported in 2025 submission.

Inorganic N-fertilizers (NFR 3.D.a.1)

6.3.5.1. Methodological issues

Due to existing data gaps on fertilizer type level Tier 1 methodology has been used.

The approach to use a 3-years average for mineral fertilizers was confirmed by MAFWS, as fertilizers listed in the official imported/exported statistics are not applied on the fields accordingly. Wholesalers and big farmers buy fertilizers when the prices are good. Fertilizers are stored. There is no relevant fertilizer production in the country; therefore, the use of imported amounts is a good basis for emission calculation.

Activity data

From 2002 to 2010, activity data are based on FAO. Data from import/export statistics is available from 2009 onwards. These data were received from the Ministry of agriculture, forestry, and water supply. For the years before 2002, only an incomplete dataset is available.

There is no reporting obligation for wholesalers in the country. There are no numbers of sold fertilizer amounts available. Anyhow, all kind of fertilizers have to be registered for permission in the country; hardcopies are available for each type of fertilizer including the shares of fertilizer substances (but no amounts). As there are hundreds of different kinds of fertilizers registered, the manual evaluation would be very time consuming and there are no resources available. As a result, no information on N amounts could be obtained from this data source.

Based on a recommendation of the Stage 3 Review 2016 North Macedonia moved to Tier 2 methodology in submission by using the N contents for different types of fertilizer as provided in the Stage 3 Review Report 2016, category issue 2:

- AS Ammonium sulfate, 0.21 kg N per kg fertilizer.
- AN Ammonium nitrate, 0.34 kg N per kg fertilizer.
- CAN Calcium ammonium nitrate, 0.27 kg N per kg fertilizer.
- U Urea, 0.46 kg N per kg fertilizer.
- MAP, 0.11 kg N per kg fertilizer.
- DAP, 0.18 kg N per kg fertilizer.
- NPK > 10 kg, 0,15 kg N per kg fertilizer
- NPK< 10 kg, 0,15 kg N per kg fertilizer</p>

For other fertilizers emissions are calculated by using average N content and average EF of all applied fertilizers.

Soil P_h could be clarified. The European Soil Bureau, Research Report No. 9, outlines different soil types and complexes in ha (%). An evaluation of this information resulted in the assessment that all relevant soils have a low soil ph =< 7.0. The national experts of the Ministry of Agriculture confirmed this assessment.

According to the IPCC 2006 Guidelines, cool climates have an average temperature below 15°C. The average temperature in North Macedonia is 11.5 degrees.

In the following table the quantities of applied N fertilizers are shown. Since only data for import and export are available, the consumption of Inorganic N-fertilizers is calculated as three years average.

Table 172 Activity data for source category NFR 3.D.a.1 - Inorganic N-fertilizers

	t N applied per year										
Year	Ammonium sulfate	Ammonium nitrate	Calcium ammonium nitrate	Urea	МАР	DAP	NPK > 10 kg	NPK< 10 kg	Other N- fertilizers	3 years average Total N/t	
1990	412	3696	1007	5100	0	20	304	0	0	10 540	
1991	412	3696	1.007	5000	0	20	304	0	0	10 440	
1992	412	3696	1.007	4600	0	20	304	0	0	10 040	
1993	412	3696	1.007	4117	0	20	304	0	0	9557	
1994	412	3696	1.007	3804	0	20	304	0	0	9244	
1995	429	3654	708	3168	0	20	304	0	0	8283	
1996	431	4009	462	3025	0	20	304	0	0	8252	
1997	434	4069	144	2657	0	20	304	0	0	7629	
1998	420	3910	126	3097	0	20	304	0	0	7878	
1999	420	3139	54	3266	0	20	304	0	0	7204	
2000	420	2618	54	3220	0	20	304	0	0	6636	
2001	420	1825	54	3005	0	20	304	0	0	5628	
2002	607	3168	45	2260	0	20	304	0	0	6405	
2003	751	4689	617	2410	0	22	555	0	0	9045	
2004	630	6530	1657	2348	0	32	1540	0	0	12 737	
2005	317	6476	3205	2610	1	40	3023	2	0	15 674	
2006	46	6916	3515	2,520	61	31	3775	3	0	16 866	
2007	42	7173	4190	2373	77	24	4159	3	0	18 041	
2008	42	7248	3438	2628	77	13	3765	3	0	17 212	
2009	30	4.516	4277	3291	35	27	3814	3	83	16 075	
2010	27	4873	4811	3618	19	25	3586	4	128	17 092	
2011	13	2693	6068	3708	18	22	4009	3	156	16 692	
2012	13	2693	6296	3314	0	8	4742	1	144	17 211	
2013	0	0	5731	3634	0	0	5673	0	98	15 137	
2014	0	823	5641	3986	0	0	6119	0	180	16 749	
2015	0	3090	4340	3858	0	0	4996	0	229	16 513	

	t N applied per year										
Year	Ammonium sulfate	Ammonium nitrate	Calcium ammonium nitrate	Urea	МАР	DAP	NPK > 10 kg	NPK< 10 kg	Other N- fertilizers	3 years average Total N/t	
2016	0	3124	3381	3187	0	0	3531	0	234	13 457	
2017	0	4561	2457	3034	17	0	3184	0	216	13 470	
2018	0	4293	2266	3343	38	0	3990	0	153	14 082	
2019	0	6524	1774	3784	58	0	5009	0	368	17 517	
2020	0	7726	1373	3862	176	0	5166	0	496	18 798	
2021	0	7482	1294	3516	195	0	4943	0	500	17 931	
2022	0	5880	1224	2934	179	0	3683	0	307	14207	

Emission factors

In the following tables the emission factors applied for source category 3.D.a.1 is shown. All emission factors are taken from the GB 2013 and the GB 2016.

Table 173 NH₃ Emissions factors for source category NFR 3.D.a.1 - Inorganic fertilizers

Fertilizer type	Value	Unit	References
AS	0.09	kg NH ₃ kg-1 fertilizer-N applied	GB 2016 Table 3-2 emission factor for source category 3.D.a.1
AN	0.015	kg NH3 kg-1 fertilizer-N applied	GB 2016 Table 3-2 emission factor for source category 3.D.a.1
CAN	0.008	kg NH3 kg-1 fertilizer-N applied	GB 2016 Table 3-2 emission factor for source category 3.D.a.1
U	0.155	kg NH3 kg-1 fertilizer-N applied	GB 2016 Table 3-2 emission factor for source category 3.D.a.1
MAP	0.05	kg NH3 kg-1 fertilizer-N applied	GB 2016 Table 3-2 emission factor for source category 3.D.a.1
DAP	0.05	kg NH3 kg-1 fertilizer-N applied	GB 2016 Table 3-2 emission factor for source category 3.D.a.1
NPK	0.05	kg NH3 kg-1 fertilizer-N applied	GB 2016 Table 3-2 emission factor for source category 3.D.a.1

The emission factors for the respective N-fertilizers are taken for soils with normal pH and cool climate as described above.

Table 174 NOx Emissions factors for source category NFR 3.D.a.1 - Inorganic fertilizers

Pollutant	Value	Unit	References
NOx	0.026	kg kg-1 fertilizer-N applied	GB 2013 Table 3-1 emission factor for source category 3.D.a.1

6.3.6. Animal manure applied to soils (NFR 3.D.a.2)

This source category covers NH₃ emissions from animal manure applied to agricultural soils.

6.3.6.1. Methodological issues

The Tier 1 methodology according the EMEP/EEA GB 2016 has been applied.

Activity data and background information on the activity data

The input data is the number of registered heads of each domestic animal species. All activity data is derived from the Statistical Yearbooks for period 1990-2006 [22] and Publication Livestock [33], prepared by the State Statistical Office for the period 2007-2015 [33] and MAKSTAT database for 2016-2020 [35]. The numbers per livestock category are presented in Table 166. Numbers of different categories of poultry were presented in Table 167. For further information, please refer to chapter 3.B Manure Management.

Emission factors

In the chapter 3.B Manure Management, for each livestock category the NH₃ emission factors for animal manure applied to soils, taken from EMEP/EEA GB 2023, are shown.

6.3.7. Urine and dung deposited by grazing animals (NFR 3.D.a.3)

This source category covers NH₃ emissions from urine and dung deposited by grazing animals.

6.3.7.1. Methodological issues

The Tier 1 default approach following the EMEP/EEA GB 2016 has been applied.

Activity data and background information on the activity data

The input data is the number of registered heads of each domestic animal species. All activity data is derived from the Statistical Yearbooks for period 1990-2006, and Publication Livestock prepared by the State Statistical Office for the period 2007-2022. The numbers per livestock category are presented in Table 166. Number of different categories of poultry is presented in Table 167. For further information, please refer to chapter 3.B Manure Management. Emission factors

In the chapter 3.B - Manure Management for each livestock category the NH₃ emission factors for grazing, taken from EMEP/EEA GB 2023, are shown.

6.3.7.2. Source-specific uncertainties and time-series consistency

For the first time a quantitative uncertainty analysis has been carried out for the North Macedonian air pollutant emission inventory and was submitted in 2017. Uncertainties of activity data and emission factors were based on the EMEP/EEA GB 2013.

The following table presents uncertainties for emissions, as well as for activity data and the EFs for sector 3.D Agricultural Soils according to EMEP/EEA 2013.

Table 175 Uncertainties of emissions, emission factors and activity data

	Categories	NH3 Emissions	NOx Emissions	NMVOC Emissions	PM2.5 Emissions	EF NH3	EF NOx	EF NMVOC	EF PM2.5
3.D.a	Inorganic N- fertilizers	+/- 206.2%	+/- 64.0%	+/- 64.0%	+/- 206.2%	+/- 200.0%	+/- 40.0%	+/- 40.0%	+/- 200.0%
Activi	ty Data								
	Inorganic N- fertilizers - amount			+/- 50%					

^{*}Note: uncertainties of emissions are combined uncertainties

Emissions from the whole period have been calculated; however, the sources on activity data are different. Namely in the period 2009-2022, data are received from the State inspectorate under

Ministry of agriculture, forestry, and water supply. For the period 1990-2008, data are taken from FAO; however, there are dips and jumps in the use of some fertilizers like ammonia nitrate for which MAFWS was contacted for further explanation of this inconsistency, however no explanation were provided.

6.3.7.3. Source-specific QA/QC and verification

The following sector specific QA/QC procedures have been carried out:

Activity data

Activity data trend analysis for peridod1990-2022 was performed. Major jumps and deeps are noticed in use of ammonium nitrate, CAN and NPK >10 kg. The deep for ammonium nitrate is in 2013 when jumps are detected for CAN and NPK>10 kg. From 2019 the amount of ammonium nitrate is highly increasing while CAN amount is decreasing and the amount of NPK>10 kg is slightly increased. The others fertilizers do not show bigger dips and jumps.

Emission factors

Default Emission factors were used, but country specific parameters (e.g. N contents of fertilizers) were also compared with defaults and values reported by other countries (e.g. Serbia, Austria and Croatia).

Results (emissions)

Comparison of emissions calculated with Tier 1 and Tier 2 method was done. Use of tier 2 method result with lower emissions started from 2001 onwards.

6.3.7.4. Source-specific recalculations including changes made in response to the review process No recalculations were done in this category.

6.3.7.5. Source-specific planned improvements including those in response to the review process

The National team is planning to conduct a TAEIX expert mission for use GB 2023, which provides more accurate emission factors based on best practices for estimating emissions for a sector which is a key category in this sector in 2024. Improved emissions will be reported in 2025 submission.3.D.c Farmlevel agricultural operations including storage, handling, and transport of agricultural products

6.3.8. Farm-level agricultural operations including storage, handling, and transport of agricultural products (NFR 3.D.c)

6.3.8.1. Methodological issues

Calculation of particulates was carried out using EF given in the GB 2023 according to tier1 methodology.

Activity data

The activity data for source 3.D.c is derived from State Statistical Yearbooks for period 1990-2022 data and are presented in the following table:

Table 176 Activity data for source category 3.D.c

Year	Arable land [ha]
1990	1 320 000
1991	1 295 000

Year	Arable land [ha]
1992	1 308 000
1993	1 299 000
1994	1 298 000
1995	1 289 000
1996	1 291 000
1997	1 285 000
1998	1 293 000
1999	1 284 000
2000	1 236 000
2001	1 244 000
2002	1 316 000
2003	1 303 000
2004	1 265 000
2005	1 229 000
2006	1 225 000
2007	1 077 000
2008	1 064 000
2009	1 014 000
2010	1 121 000
2011	1 120 000
2012	1 238 000
2013	1 260 336
2014	1 263 155
2015	1 264 408
2016	1 267 134
2017	1 266 008
2018	1 264 000
2019	1 264 578
2020	1 261 687
2021	1 259 996
2022	1 256 854

Emission factors

Table 177 Emission factors

Pollutant	Value	Unit	References
PM2.5	0.06	Kg ha ⁻¹	GB 2023 Table 3-1 emission factor for source category 3.D.c
PM10	1.56	Kg ha ⁻¹	GB 2023Table 3-1 emission factor for source category 3.D.c
TSP	1.56	Kg ha ⁻¹	GB 2023 Table 3-1 emission factor for source category 3.D.c

6.3.8.2. Source-specific recalculations including changes made in response to the review process No recalculations were made in this category.

6.3.8.3. Source-specific planned improvements including those in response to the review process

The National team is planning to conduct a TAEIX expert mission for use GB 2023, which provides more accurate emission factors based on best practices for estimating emissions for a sector which is a key category in this sector in 2024. Improved emissions will be reported in 2025 submission.

6.3.9. 3.D.e Cultivated crops

6.3.9.1. Methodological issues

Calculation of particulates was carried out using EF given in the GB 2019 according to Tier1 methodology.

Activity data

The activity data for source 3.D.e is derived from State Statistical Yearbooks for period 1990-2022 data and are presented in the following table:

Table 178 Activity data for source 3.D

able 178 Activity data for source 3.D			
Year	kg/ha		
1990	1 320 000		
1991	1 295 000		
1992	1 308 000		
1993	1 299 000		
1994	1 298 000		
1995	1 289 000		
1996	1 291 000		
1997	1 285 000		
1998	1 293 000		
1999	1 284 000		
2000	1 236 000		
2001	1 244 000		
2002	1 316 000		
2003	1 303 000		
2004	1 265 000		
2005	1 229 000		
2006	1 225 000		
2007	1 077 000		
2008	1 064 000		
2009	1 014 000		
2010	1 121 000		
2011	1 120 000		
2012	1 238 000		
2013	1 260 336		
2014	1 263 155		
2015	1 264 408		
2016	1 267 134		
2017	1 266 008		
2018	1 264 000		
2019	1 264 578		
2020	1 261 687		
2021	1 259 996		
2022	1 256 854		

Emission factors

Table 179 Emission factors for NMVOC

Pollutant	Value	Unit	References
NMVOC	0.86	Kg ha ⁻¹	GB 2023 Table 3-1 emission factor for source category 3.D.e

6.3.9.2. Source-specific recalculations including changes made in response to the review process No recalculations were done in this category.

6.3.9.3. Source-specific planned improvements including those in response to the review process

The National team is planning to conduct a TAEIX expert mission for use GB 2023, which provides more accurate emission factors based on best practices for estimating emissions for a sector which is a key category in this sector in 2024. Improved emissions will be reported in 2025 submission.

6.3.10. Field burning of agricultural residues - NFR 3.F

Field burning activities were discussed with agriculture experts. Field burning is not permitted by law and there are no data on illegal field burning activities available.

Therefore, the source category 3.F "Field burning is reported as not occurring ("NO"). Anyhow, the current estimates for sector 5.C.2 "Open burning of waste" (average amount of waste burned for arable farmland of 25 kg/ha) should be kept as it is liable that open burning of small-scale (agricultural) waste happens in the country.

In the frame of the EU 4 Green project calculation for this sector were made for every five years for the period 1990-2040, by use of GAINS model and FINN remote sensing dataset. These data will be analyzed and submitted during next year.

7. **WASTE (NFR 5)**

7.1. Sector overview

The chapter includes calculation of NOx, SO₂, CO, NMVOC, Particulates, heavy metals and persistent organic compounds (POPs). Emissions addressed in this chapter include emissions from the next subcategories:

- 5.A Solid waste disposal on land
- 5.B.1-Biological treatment of waste-Composting
- 5.C.1.biii Clinical waste incineration
- 5.C.2 Open burning of waste
- 5.D.1 Domestic wastewater handling
- 5.D.2-Industrial wastewater handling

As during the stage 3 review in 2016, it was recommended to change to Tier 2 method for the category 5.A, this recommendation has been followed. Additionally, emissions for category 5.D.1, 5.D.2 and 5.B.1 have been calculated using a Tier 1 approach.

Explanations of the source of activity data, methodology used and emission factors are presented below. According to information from the statistical office, about 99% of municipal solid waste is landfilled and only less than 1% is composting or recycled. Generally, in the country there is only clinical waste incinerator operating from 2000. Other types of waste incineration, as well as cremation process do not occur. Open burning of waste covers the volume reduction by open burning of small-scale (agricultural) waste. It does not include stubble burning, or forest fires. The open burning of rubber tires or waste oil on farms has also not been included. Agricultural wastes that might be burned are crop residues (e.g., cereal crops, peas, beans, soya, sugar beet, oil seed rape, etc.), wood, pruning, slash, leaves, plastics, and other general wastes. Straw and wood are often used as the fuel for the open burning of agricultural wastes.

Regarding wastewater treatment, there are twenty-one Wastewater treatment plants (WWTP) operating in North Macedonia. For the plant in Ohrid and Dojran, activity data are available for the whole time series. Emissions have been estimated based on these activity data and the data from another wastewater treatment plants.

Emissions from 5.B.1-Biological treatment of waste (composting) have been calculated. Municipal waste incineration, industrial waste incineration, hazardous waste incineration, sewage sludge incineration and cremation do not occur in our country.

Regarding the Industrial wastewater handling, some installations subjected under the IPPC license system are obligated to install wastewater treatment. Emissions from this NFR category 5.D.2 have been calculated almost for the whole time series.

Emissions from 5.B.2 Biological treatment of waste - Anaerobic digestion at biogas facilities, 5.C.1 other waste incineration, 5.D.3-Other wastewater handling and 5.E. Other waste (Sludge spreading, car fire, detached and undetected house fires, apartment building fire, industrial building fire), have not been calculated.

7.1.1. Methodology

Tier 1 approach was used, using the given default Emission factors from the GB 2023.

Completeness

The completeness in this sector is presented in the following table.

Table 180 NFR categories included or not included in Waste sector for 2016

	NFR category	Completeness
5.A	Biological treatment of waste - Solid waste disposal on land	٧
5.C.1.biii	Clinical waste incineration	٧
5.C.2	Open burning of waste	٧
5.B.1	Biological treatment of waste - Composting	٧
5.B.2	Biological treatment of waste - Anaerobic digestion at biogas facilities	NE
5.C.1.a	Municipal waste incineration	NO
5.C.1.bi	Industrial waste incineration	NO
5.C.1.bii	Hazardous waste incineration	NO
5.C.1.biv	Sewage sludge incineration	NO
5.C.1.bv	Cremation	NO
5.C.1.bvi	Other waste incineration (please specify in the IIR)	NE
5.D.1	Domestic wastewater handling	٧
5.D.2	Industrial wastewater handling	٧
5.D.3	Other wastewater handling	NE
5.E	Other waste (please specify in IIR)	NE

7.1.2. Source-specific uncertainties and time-series consistency

Activity data for the whole time series and background information on these are hardly available, for which reason the uncertainty is expected to be rather high. Especially getting data on waste disposal is hard, as these data are required back to 1950, a time when Macedonia was still part of Yugoslavia. For further information, see the respective chapter below. Uncertainties of emissions, emission factors and activity data for 5.A and 5.C are presented below.

Time series consistency is ensured as recalculations are carried out for the whole time series and not only for specific years.

7.1.3. Source-specific QA/QC and verification

The results of this year's calculations have been compared with last year, and the reasons for any major differences clarified. Calculation sheets were checked for any errors in formulas or links. Data or information received from third parties was reviewed and archived to ensure transparency.

The recommendations of the stage 3 review were taken in consideration and improvements made:

- request for country specific data to statistical office and installations
- change to Tier 2 approach for 5.A and 5C1biii
- calculation of emissions from 5.B.1
- estimation of emissions from 5.D.1
- calculation of emission from 5.D.2
- review of notation key use.
- correction of emissions in 5C1biii and 5C2
- 7.1.4. Source-specific recalculations including changes made in response to the review process

No recalculations were made in this category.

7.1.5. Source-specific planned improvements including those in response to the review process

Planned improvements refer to categories 5D1 and 5C2, also according to remarks and recommendations given in the Stage 3 review report conducted in 2020.

7.2. Solid waste disposal on land (NFR 5.A)

Within this category the emissions arising from solid waste disposal shall be accounted for, whereby municipal and industrial waste shall be considered. However, it has to be taken into account that only waste which still undergoes biological or chemical degradation is relevant. Therefore, inert waste (like construction waste) shall not be included.

7.2.1. Methodological issues

NMVOC, CO and NH₃ was estimated using tier 2 methodology, and particulate emissions were estimated using Tier 1 method by multiplying amount of landfilled municipal solid waste and emission factors. NMVOC, CO and NH₃ have been calculated using Tier 2 emission factors following the guidance of 2006 IPCC Guidelines for National Greenhouse Gas Inventories.

Activity Data

As for Tier 2 methodology, since activity data on waste landfilled is required back to 1950, extrapolation was necessary based on population and GDP data. Data on municipal solid waste generation per person is available for the years 2003 until 2022 (source: Eurostat statistics and EEA report [43]). The hereby available information provided data on waste generation from 2003 to 2022. For the data from 1990-2003 the average annual change between 2003 and 2017 was applied, and then the value for 1990 (which is 97 kg per person), was kept constant until 1950.

Total municipal solid waste generation was calculated by multiplying with population data. Data on population is available in the Statistical Yearbooks of Macedonia, although before 1990 data were interpolated between decades. According to information from the statistical office about 99% of municipal solid waste is landfilled, for that reason it was assumed that 100% of municipal solid waste was deposited on uncategorized landfills.

In order to determine the waste fraction, information published in an EEA study "Municipal Waste Management in FYROM (2013), page 7-8" was used [43]. The shares are kept constant for the whole time series (1950 to 2020) due to a lack of better data, although, it can be assumed that in 1950 the waste composition was different.

Table 181 Type of waste, percentage and considerations in FOD model

Type of waste	Percentage	Consideration in FOD model as:
Biodegradable (organic) waste	26%	Food
Wood	2.7%	Wood
Paper and cardboard	11.9%	Paper
Plastics	9.6%	Plastics, other inert
Glass	3.5%	Plastics, other inert
Metals	2.6%	Plastics, other inert
Composite packaging	2.2%	Plastics, other inert
Other waste (complex products, inert materials, other categories)	7.5%	Plastics, other inert
Textiles	2.9%	Textile
Hazardous household waste	0.2%	Not considered
Fine mixed particle (<10mm)	30.9%	Plastics, other inert

It has been possible to collect data on industrial waste, but only for the year 2014. There are no available data in the latest year. The following table shows which waste types have been considered. In order to estimate industrial waste amounts back to 1950, GDP was used. National GDP data are available from 1994 to 2022 [44]. Before 1994, GDP for former Yugoslavia were found and used. The Industrial waste*by category, in tons, from 2016 was used also for the latest years due to the fact that this data from SSO were considered reliable.

Table 182 Type of waste, and quantity in tons

Type of waste	Quantity [t]
Waste from households and similar waste – non-hazardous	5.131,38
Mixed and undifferentiated materials – nonhazardous	9.643,95
Waste from sorting materials – non-hazardous	167,65
Deposition	729,54
Waste from combustion	3.005,33
Soil waste	9.827,26
Waste from excavation	71.027,10
Industrial waste disposition	945.761,30
Paper and cardboard waste	483.859,40
Rubber waste	1.650,89
Plastics waste	8.792,21
Wood waste	1.398,89
Textile waste	721,05
Animal waste and mixed food waste	2.408,00
Agricultural waste	3.427,89
Animal manure and urine	86.099,50
TOTAL	1.633.651,33

Table 183 Activity data for source category 5.A – Solid waste disposal on land for the period 1990-2022

Year	Municipal Waste in Gg	Industrial Waste in Gg	Total Waste in Gg	Methane Emission in m ³
1990	198	197	956.970	55.880.395
1991	209	208	866.923	56.799.402
1992	221	222	762.066	57.288.296
1993	233	236	692.189	57.303.851
1994	246	235	711.155	57.013.027
1995	260	250	802.077	56.816.648
1996	274	267	840.913	56.979.209
1997	289	283	885.602	57.269.171
1998	305	301	935.614	57.703.436
1999	321	319	999.662	58.295.947
2000	339	339	1.108.203	59.095.131
2001	358	359	1.180.774	60.271.499
2002	378	377	1.218.358	61.657.934
2003	399	875	1.273.595	63.105.610
2004	463	914	1.376.957	64.676.555
2005	572	1004	1.575.993	66.499.410
2006	589	1090	1.678.902	68.886.318
2007	606	1214	1.819.752	71.554.400
2008	714	1350	2.064.464	74.645.308
2009	726	1350	2.075.591	78.427.384
2010	721	1423	2.144.393	82.054.979
2011	735	1511	2.245.923	85.797.193
2012	787	1519	2.306.024	89.753.957
2013	793	1634	2.426.435	93.688.590
2014	765	1634	2.398.807	97.918.081
2015	786	1634	2.419.833	100.560.449
2016	797	1634	2.430.236	104.436.069
2017	787	1634	2.420.537	108.152.584
2018	855	1634	2.488.516	111.664.029
2019	916	1634	2.549.594	115.213.404
2020	913	1634	2.546.684	118.723.324
2021	896	1634	2.529.717	122.057.830
2022	856	1634	2.490.417	125.190.410

Emission Factors

As for the emission calculations the IPCC waste model was applied, the default parameters and factors were used as set in the excel calculation sheet for Southern European Countries with dry temperature.

Table 184 Parameter used for methane calculation of different waste types for source category 5.A. -Biological treatment of waste

Parameter	Food	Garde n	Paper	Wood	Textiles	Industrial
DOC	0.15	0.2	0.4	0.43	0.24	0.150
DOCf	0.500	0.500	0.500	0.500	0.500	0.500
Methane generation rate constant (k)	0.060	0.050	0.040	0.020	0.040	0.050
Half-life time (t1/2. years):	11.6	13.9	17.3	34.7	17.3	13.9
exp1 exp(-k)	0.94	0.95	0.96	0.98	0.96	0.95
Process start in deposition year. Month M	13.00	13.00	13.00	13.00	13.00	13.00
exp(-k*((13-M)/12))	1.00	1.00	1.00	1.00	1.00	1.00
Fraction to CH4	0.500	0.500	0.500	0.500	0.500	0.500

The methane correct factor is set to 0.6, as the landfills are treated as uncategorized. All municipal and industrial waste is landfilled, other treatments are not relevant. No methane recovery occurs.

NMVOC, CO and NH₃ were estimated based on the landfill gas emitted. Therefore, methane emission has been converted to landfill gas in m³ by consideration of the CH₄ concentration in the landfill gas and by taking into account the absolute density of CH₄. Based on those emissions for NMVOC, CO and NH₃ were calculated. However due to recommendation given by Stage 3 review in 2020, NMVOC emissions are taken from the GHG inventory. Since the last year for which inventory has been preparied is 2019 the same emissions are presented for the period 2020-2022. GHG inventory which will consider emissions in the period 2020-2022 will be prepared during this year and updated values will be submitted during next year.

Table 185 Data for conversion of methane emissions to NMVOC, CO and NH₃ emissions for category 5A - Biological treatment of waste

Parameter	CH ₄	NMVOC	СО	NH ₃
Relative density	0.555	0.555	0.967	-
Absolute density [kg/Nm3] bei 30°C	0.650	0.72	1.13	-
Concentration in landfill gas [%] (Cd, Hg, Pb, NMVOC, NH3 in mg/m3)	55	300	2	10

The emission factors used to calculate emission from particulate matter are as outlined in the GB 2023 for source category 5.A.

Table 186 Emission factors for source category 5.A- Biological treatment of waste

Pollutant	Value	Unit	Reference
NMVOC	1.56	kg/Mg	GB 2023 Table 3-1 Tier 1 emission factors for source category 5.A Biological treatment of waste – Solid waste disposal on land
TSP	0.463	g/Mg	GB 2023 Table 3-1 Tier 1 emission factors for source category 5.A Biological treatment of waste – Solid waste disposal on land
PM10	0.219	g/Mg	GB 2023 Table 3-1 Tier 1 emission factors for source category 5.A Biological treatment of waste – Solid waste disposal on land

PM2.5	0.33	g/Mg	GB 2023 Table 3-1 Tier 1 emission factors for source category 5.A Biological treatment
			of waste – Solid waste disposal on land

For NO_x and SO_x , heavy metals except Hg and POPs the notation key NA was used. For NH_3 , Hg and CO the notation key NE was used – as outlined in the GB 2016/2023.

7.2.2. Source-specific uncertainties and time-series consistency

Uncertainties of activity data and emission factors have been estimated by using Tier 1 methodology of the EMEP/EEA GB 2013.

Table 187 Uncertainties of emissions, emission factors and activity data for 5.A

Categories	NMVOC Emissions	PM2.5 Emissions	EF NMVOC	EF PM2.5
5.A Solid waste disposal on land	+/- 134.6%	+/- 206.2%	+/- 125.0%	+/- 200.0%
Activity data				
Amount of landfilled waste		+/- 50,0%		

7.2.3. Source-specific QA/QC and verification

The calculation has been checked by waste management experts and the used parameters and factors have been discussed. Therefore, the 4-eye principle was applied. Internal documentation was written to allow for transparency and reproduction in the following years.

The results have been compared to emission estimates from other countries, to check if the range of magnitude is right.

7.2.4. Source-specific recalculations including changes made in response to the review process

No recalculations were done in this category.

7.2.5. Source-specific planned improvements including those in response to the review process

Reaclculation of NMVOC emissions for for period 2020-2022, since value for last reporting year of GHG emissions was presented for the latest three years.

7.3. Biological treatment of waste-Composting-NFR 5.B.1

7.3.1.1. Methodological issues

Small amount of organic domestic waste is gathered separately. Composting the organic waste produces a reusable product. Emissions to air from this source category include odors; also, small amounts of ammonia are produced. We use the Tier 2 method, to calculate the emission of NH3 since it is expected that it is easier to obtain the necessary input data for this approach. Emissions from this category arise according to recommendation of the stage 3 review process.

Activity data

The activity data for source category-5.B.1 is part of organic municipal waste in (kt) which is composted. The data are gathered from Annual reports from the Major of the municipalities which are submitted to the Ministry of Environment and Physical Planning each year.

Table 188 Activity data for source category 5.B.1 – Waste composted 1990-2022

		•	
Year	Waste composted in kt	Year	Waste composted in kt
1990	NO	2006	NO
1991	NO	2007	NO
1992	NO	2008	NO
1993	NO	2009	0.45
1994	NO	2010	0.31
1995	NO	2012	0.73
1996	NO	2013	0.44
1997	NO	2014	1.94
1998	NO	2015	2.81
1999	NO	2016	2.24
2000	NO	2017	1.11
2001	NO	2018	0.74
2002	NO	2019	0.55
2003	NO	2020	0.44
2004	NO	2021	0.17
2005	NO	2022	0.12

Emission Factors

Tier 2 emission factors for source category 5.B.1 Biological treatment of waste - composting, compost production is 0.24 for the emission of NH₃.

7.3.2. Source-specific uncertainties and time-series consistency

Time series consistency is ensured by applying the same methodology for the whole time series.

7.3.3. Source-specific QA/QC and verification

Standard QA/QC procedures were carried out for this source category, i.e. activity data were checked for plausibility and time-series consistency; emission data were checked for completeness and for consistency between the calculation files, NFR tables and the IIR.

7.3.4. Source-specific recalculations including changes made in response to the review process

Emissions coming from the category 5.B.1, category was calculated for the period from 2009 till 2022. Waste composted started from 2009. From 1990 till 2008 waste composting didn't occur in our country. No recalculation was performed in this category.

7.3.5. Source-specific planned improvements including those in response to the review process

Activity data were received from several out of 84 municipalities. Emissions are underestimated in this sector. We intend to improve the process of collection the data and information about the biological treatment of waste-composting. The information and data currently are underestimated. With the

establishment of National environmental information system, which is in phase of testing this year, it is expected to have more complete data gathering starting from next reporting round.

7.4. Clinical Waste incineration - NFR 5.C.

7.4.1. Methodological issues

Emissions from this source category are estimated according to GB–2023. The guideline outlines simple methodology where the amount of clinical waste incinerated is multiplied with Tier 1 emission factors.

Activity data

The activity data for source category 5.C - Clinical waste originates from the annual report of company "Drisla" where clinical waste incineration is operating. The company started with operation in 2000. Data for the period 2000-2022 were taken from the "Drisla" landfill website [38].

Table 189 Quantity of clinical waste incinerated in the period 2000–2022

Year	Clinical waste [Gg]	Year	Clinical waste [Gg]
2000	0.115	2011	0.600
2001	0.232	2012	0.677
2002	0.249	2013	0.727
2003	0.255	2014	0.726
2004	0.323	2015	0.962
2005	0.376	2016	1.023
2006	0.329	2017	1.064
2007	0.357	2018	0.971
2008	0.362	2019	0.996
2009	0.416	2020	1.073
2010	0.465	2021	1.154
		2022	1.055

Emission Factors

The emission factors used are as outlined in the GB 2023 and presented in the following table. Due to installation of filter for the period 2018-2020 the EF from the 2009 Guidebook were used. This Guidebook has EF for this type of reduction technics- Type 2 plant: larger on-site facilities equipped with de-dusting systems, while in the GB 2019/2023, only EF for BAT is provided.

Table 190 Emission factors for source category 5.c.1.dii - Clinical waste incineration

able 250 21111551611 lasters for source dateBory storation					
Pollutant	Value	Unit	References		
SO ₂	1.1	kg/Mg waste	GB 2023, Table 3-1 Tier 1 emission factors for source category, 5.C.1.b.iii Clinical waste incineration. uncontrolled rotary kiln incinerator, page 8		
NOx	2.3	kg/Mg waste	GB 2023, Table 3-1 Tier 1 emission factors for source category, 5.C.1.b.iii Clinical waste incineration. uncontrolled rotary kiln incinerator, page 8		
NMVOC	0.7	kg/Mg waste	GB 2023, Table 3-1 Tier 1 emission factors for source category, 5.C.1.b.iii Clinical waste incineration. uncontrolled rotary kiln incinerator, page 8		

Pollutant	Value	Unit	References
TSP	17	kg/Mg waste	GB 2023, Table 3-1 Tier 1 emission factors for source category, 5.C.1.b.iii Clinical waste incineration. uncontrolled rotary kiln incinerator, page 8
ВС	2.3	% of TSP	GB 2023, Table 3-1 Tier 1 emission factors for source category, 5.C.1.b.iii Clinical waste incineration. uncontrolled rotary kiln incinerator, page 8
со	0.19	g/Mg waste	GB 2023, Table 3-1 Tier 1 emission factors for source category, 5.C.1.b.iii Clinical waste incineration. uncontrolled rotary kiln incinerator, page 8
Pb	62	g/Mg waste	GB 2023, Table 3-1 Tier 1 emission factors for source category, 5.C.1.b.iii Clinical waste incineration. uncontrolled rotary kiln incinerator, page 8
Cd	8	g/Mg waste	GB 2023, Table 3-1 Tier 1 emission factors for source category, 5.C.1.b.iii Clinical waste incineration. uncontrolled rotary kiln incinerator, page 8
Cr	2	g/Mg waste	GB 2023, Table 3-1 Tier 1 emission factors for source category, 5.C.1.b.iii Clinical waste incineration. uncontrolled rotary kiln incinerator, page 8
Cu	98	g/Mg waste	GB 2023, Table 3-1 Tier 1 emission factors for source category, 5.C.1.b.iii Clinical waste incineration. uncontrolled rotary kiln incinerator, page 8
Hg	5.4	g/Mg waste	GB 2019, Table 3-1 Tier 1 emission factors for source category, 5.C.1.b.iii Clinical waste incineration. uncontrolled rotary kiln incinerator, page 8
As	0.1	kg/g waste	GB 2019, Table 3-1 Tier 1 emission factors for source category, 5.C.1.b.iii Clinical waste incineration. uncontrolled rotary kiln incinerator, page 8
Ni	0.4	kg/g waste	GB 2019, Table 3-1 Tier 1 emission factors for source category, 5.C.1.b.iii Clinical waste incineration. uncontrolled rotary kiln incinerator, page 8
PCB	0.02	g/Mg waste	GB 2023, Table 3-1 Tier 1 emission factors for source category, 5.C.1.b.iii Clinical waste incineration. uncontrolled rotary kiln incinerator, page 8
PCDD/PCDF (dioxins/furans)	40	mg I-Teq/Mg waste	GB 2019, Table 3-1 Tier 1 emission factors for source category, 5.C.1.b.iii Clinical waste incineration. uncontrolled rotary kiln incinerator, page 8
Total 4 PAHs	0.04	mg/Mg waste	GB 2019, Table 3-1 Tier 1 emission factors for source category, 5.C.1.b.iii Clinical waste incineration. uncontrolled rotary kiln incinerator, page 8
НСВ	0.1	g/Mg waste	GB 2019, Table 3-1 Tier 1 emission factors for source category, 5.C.1.b.iii Clinical waste incineration. uncontrolled rotary kiln incinerator, page 8
NOx	1.4	kg/Mg waste	GB 2009, Table 3-5, Tier 2 emission factors for source category, 6.c.a, Clinical waste incineration, Type 2 plants, page 13
СО	2.8	kg/Mg waste	GB 2009, Table 3-5, Tier 2 emission factors for source category, 6.c.a, Clinical waste incineration, Type 2 plants, page 13
NMVOC	0.7	kg/Mg waste	GB 2009, Table 3-5, Tier 2 emission factors for source category, 6.c.a, Clinical waste incineration, Type 2 plants, page 13
SOx	1.4	kg/Mg waste	GB 2009, Table 3-5, Tier 2 emission factors for source category, 6.c.a, Clinical waste incineration, Type 2 plants, page 13
TSP	0.5	kg/Mg waste	GB 2009, Table 3-5, Tier 2 emission factors for source category, 6.c.a, Clinical waste incineration, Type 2 plants, page 13
Pb	63.2	g/Mg waste	GB 2009, Table 3-5, Tier 2 emission factors for source category, 6.c.a, Clinical waste incineration, Type 2 plants, page 13
Cd	7.35	g/Mg waste	GB 2009, Table 3-5, Tier 2 emission factors for source category, 6.c.a, Clinical waste incineration, Type 2 plants, page 13
Hg	4.47	g/Mg waste	GB 2009, Table 3-5, Tier 2 emission factors for source category, 6.c.a, Clinical waste incineration, Type 2 plants, page 13

Pollutant	Value	Unit	References
As	1.3	g/Mg waste	GB 2009, Table 3-5, Tier 2 emission factors for source category, 6.c.a, Clinical waste incineration, Type 2 plants, page 13
Cr	4.7	g/Mg waste	GB 2009, Table 3-5, Tier 2 emission factors for source category, 6.c.a, Clinical waste incineration, Type 2 plants, page 13
Cu	2.6	g/Mg waste	GB 2009, Table 3-5, Tier 2 emission factors for source category, 6.c.a, Clinical waste incineration, Type 2 plants, page 13
Ni	0.4	g/Mg waste	GB 2009, Table 3-5, Tier 2 emission factors for source category, 6.c.a, Clinical waste incineration, Type 2 plants, page 13
РСВ	0.02	g/Mg waste	GB 2009, Table 3-5, Tier 2 emission factors for source category, 6.c.a, Clinical waste incineration, Type 2 plants, page 13
PCDD/PCDF	0.141	mg I-Teq/Mg waste	GB 2009, Table 3-5, Tier 2 emission factors for source category, 6.c.a, Clinical waste incineration, Type 2 plants, page 13
Total 4 PAHs	0.04	mg/Mg waste	GB 2009, Table 3-5, Tier 2 emission factors for source category, 6.c.a, Clinical waste incineration, Type 2 plants, page 13
НСВ	0.1	g/Mg waste	GB 2009, Table 3-5, Tier 2 emission factors for source category, 6.c.a, Clinical waste incineration, Type 2 plants, page 13

7.4.2. Source-specific uncertainties and time-series consistency

In the NFR sector 5.C the activity data uncertainty was estimated to be 10%; the emission factor uncertainty was estimated to be 200% (rating D), based on expert judgment for SO_x , NO_x 125% (rating C) for NMVOC. No uncertainty analysis was done for the other pollutants.

7.4.3. Source-specific QA/QC and verification

Standard QA/QC procedures were carried out for this source category, i.e. activity data were checked for plausibility and time-series consistency; emission data were checked for completeness and for consistency between the calculation files, NFR tables and the IIR.

7.4.4. Source-specific recalculations including changes made in response to the review process

No recalculation was performed in this category.

7.4.5. Source-specific planned improvements including those in response to the review process

Recalluculation of SOx emissions due to omitted number in the emission factor. EF 1.4 has been used instead of 1.1.

7.5. Open burning of waste- NFR 5.C.2

7.5.1. Methodological issues

The simpler methodology involves the use of a single emission factor for each pollutant representing the emission per mass of waste burned, combined with activity statistics:

 $E_{pollutant} = AR_{production} \times EF_{pollutant}$

This requires a prior knowledge of the weight of agricultural waste produced per hectare of forestry, orchard, and farmland. It is assumed that open burning of agricultural waste (except stubble burning) is mainly practiced in forestry, orchard, and arable farming; emissions from open burning for other

types of farming are likely to be less significant and are assumed to be negligible. The average amount of waste burned for arable farmland is therefore 5.C.2 Open burning of waste GB 2013/2009 estimated to be 25 kg/hectare. This approach has been used for estimation of activity data. The activity data were calculated when the agriculture area expressed in hectares was multiplied with the factor 25 and divided by 1000 which equals to the waste burned in kg. For example, for 2018 the burning waste was calculated in this manner 518.740*25/1000=12.969

Activity data

Data on arable farmland taken from the statistical office and calculated waste burned are presented in the following table. Data on arable farmland are taken from State Statistical Office of the Republic of North Macedonia, Field crops, orchards, and vineyards, 2007-2017 and MAKSTAT database [32].

Table 191 Activity data for source category 5.C.2 - Open burning of waste

Year	Arable farmland [hectare]	Waste [Mg]	Year	Arable farmland [hectare]	Waste [Mg]
1990	667 000	16 675	2006	537 000	13 425
1991	664 000	16 600	2007	529 000	13 225
1992	662 000	16 550	2008	521 000	13 025
1993	663 000	16 575	2009	513 000	12 825
1994	661 000	16 525	2010	504 000	12 600
1995	656 000	16 400	2011	511 000	12 775
1996	658 000	16 450	2012	510 000	12 750
1997	647 000	16 175	2013	509 000	12 725
1998	635 000	15 875	2014	511 579	12 789
1999	633 000	15 825	2015	513 564	12 839
2000	598 000	14 950	2016	516 644	12 916
2001	612 000	15 300	2017	516 870	12 922
2002	577 000	14 425	2018	518 740	12 969
2003	569 000	14 225	2019	519 848	12 996
2004	560 000	14 000	2020	517 039	12 926
2005	546 000	13 650	2021	516 733	12 918
			2022	514 436	12 861

Emission Factors

The emission factors used are as outlined in the GB 2023 for source category 5.C.2.

Table 192 Emission factors for source category 5.C.2 - Open burning of waste

Pollutant	Value	Unit	References		
NOx	3.18	kg/Mg	GB 2023, Table 3-1 Tier 1, emission factors for source category 5.C.2 Small-scale waste burning, page 6		
NMVOC	1.23	kg/Mg	GB 2023, Table 3-1 Tier 1, emission factors for source category 5.C.2 Small-scale waste burning, page 6		
SOx	0.11	kg/Mg	GB 2023, Table 3-1 Tier 1, emission factors for source category 5.C.2 Small-scale waste burning, page 6		

Pollutant	Value	Unit	References
PM2.5	4.19	kg/Mg	GB 2023, Table 3-1 Tier 1, emission factors for source category 5.C.2 Small-scale waste burning, page 6
PM10	4.51	kg/Mg	GB 2023, Table 3-1 Tier 1, emission factors for source category 5.C.2 Small-scale waste burning, page 6
TSP	4.64	kg/Mg	GB 2023, Table 3-1 Tier 1, emission factors for source category 5.C.2 Small-scale waste burning, page 6
ВС	42	% of PM2.5	GB 2023, Table 3-1 Tier 1, emission factors for source category 5.C.2 Small-scale waste burning, page 6
СО	55.83	kg/Mg	GB 2023, Table 3-1 Tier 1, emission factors for source category 5.C.2 Small-scale waste burning, page 6
Pb	0.49	g/Mg	GB 2023, Table 3-1 Tier 1, emission factors for source category 5.C.2 Small-scale waste burning, page 6
Cd	0.1	g/Mg	GB 2023, Table 3-1 Tier 1, emission factors for source category 5.C.2 Small-scale waste burning, page 6
Cr	0.01	g/Mg	GB 2023, Table 3-1 Tier 1, emission factors for source category 5.C.2 Small-scale waste burning, page 6
Cu	0.2	g/Mg	GB 2023, Table 3-1 Tier 1, emission factors for source category 5.C.2 Small-scale waste burning, page 6
Se	0.07	g/Mg	GB 2023, Table 3-1 Tier 1, emission factors for source category 5.C.2 Small-scale waste burning, page 6
"PCDD/PCDF (dioxins/furans)"	10	mg I- Teq/Mg	GB 2023, Table 3-1 Tier 1, emission factors for source category 5.C.2 Small-scale waste burning, page 6
benzo(a) pyren	2.33	g/Mg	GB 2023, Table 3-1 Tier 1, emission factors for source category 5.C.2 Small-scale waste burning, page 6
benzo(b) fluoranthene	4.63	g/Mg	GB 2023, Table 3-1 Tier 1, emission factors for source category 5.C.2 Small-scale waste burning, page 6
benzo(k) fluoranthene	5.68	g/Mg	GB 2023, Table 3-1 Tier 1, emission factors for source category 5.C.2 Small-scale waste burning, page 6

7.5.2. Source-specific uncertainties and time-series consistency

See chapter 7.4.2.

7.5.3. Source-specific QA/QC and verification

See chapter 7.4.3.

7.5.4. Standard QA/QC procedures were carried out for this source category, i.e. activity data were checked for plausibility and time-series consistency; emission data were checked for completeness and for consistency between the calculation files, NFR tables and the IIR.Source-specific recalculations including changes made in response to the review process

No recalculations were made in this category.

7.5.5. Source-specific planned improvements including those in response to the review process

No planned improvements.

7.6. Wastewater treatment - NFR 5.D.1 and 5.D.2

7.6.1. Methodological issues

In Macedonia there are seventeen wastewater treatment plants, they have been contacted to get data plant specific data and especially the amount of domestic wastewater treated in the plants. Based on the data received by the plants, emission was calculated based on a Tier 1 approach.

It was also attempted to gain data on how much people are connected to wastewater treatment. The data from Eurostat provide values for several years, in the range of 5-7%. Another information was found in the SOER country profile for Macedonia (see below), mentioning that "Sixty percent of dwellings are connected to a public sewage system, 21% have septic tanks and another 19% have only a system of uncontrolled wastewater discharge ". According to the BC experts, this number seems right concerning the connection to the sewage system, but when it comes to the connection to waste water treatment plants, the percentages provided by EUROSTAT seem reliable. Still, this information is not sufficient to decide on how many people are using latrines or skeptic tanks, which serve as activity data for NH3 emissions. For this reason, NH3 emissions from 5.D cannot be calculated with the available data. However, to also report on NMVOC emissions from 5.D, the amount of wastewater from households and industries is needed.

With regards to the 5.D.2, Industrial facilities send the information about their wastewater treated in their wastewater treatment plants through questionnaires send to them by the State Statistical Office. The results for the quantity of wastewater treated and emissions calculated based on a Tier 1 approach of NMVOC are underestimated.

Activity data

Activity data on wastewater handled in treatment plants are presented in the following table:

Table 193 Activity data for source category 5.D.1 - Wastewater treatment-(1990-2022)

Year	Water treated [m ³]	Year	Water treated [m³]
1990	14 690 160	2007	15.304.820
1991	15 320 880	2008	16.093.220
1992	14.374.800	2009	21.187.840
1993	15.636.240	2010	21.698.560
1994	15.320.880	2011	21.113.200
1995	14.374.800	2012	22.836.899
1996	14.847.840	2013	21.079.644
1997	15.163.200	2014	24.709.351
1998	15.793.920	2015	25.322.341
1999	15.951.600	2016	12.675.451
2000	14.532.480	2017	9.639.664
2001	15.478.560	2018	21.395.408
2002	14.374.800	2019	36.126.117
2003	15.163.200	2020	47.746.743
2004	15.462.500	2021	39.301.456

2005	16 408 580	2022	29.861.372
2006	16 250 900		

Table 194 Activity data for source category 5.D.2 – Industrial Wastewater treatment-(1990-2022)

Year	Water treated [m³]	Year	Water treated [m ³]
1990	NO	2007	349.927.000
1991	NO	2008	94.786.000
1992	7.449.000	2009	49.593.000
1993	24.469.000	2010	20.131.000
1994	35.479.000	2011	77.573.000
1995	46.489.000	2012	92.492.000
1996	19.298.000	2013	230.053.000
1997	33.157.000	2014	12.161.000
1998	47.016.000	2015	16.188.000
1999	22.002.000	2016	12.620.000
2000	15.197.000	2017	242.036.000
2001	3.728.000	2018	351.131.000
2002	41.461.000	2019	6.823.420
2003	45.879.000	2020	220.391.000
2004	NE	2021	219.714.000
2005	132.976.000	2022	332.125.000
2006	132.976.000		

The emission factors applied are the given ones in the EMEP 2023 guidebook, which allowed the calculation of NMVOC emission from domestic wastewater handling. The emission factor used is 15mg NMVOC per m³ wastewater. There is an available emission factor on ammonia but it has not been used for calculation of ammonia emissions, because until now there is no available data on number of people connected to latrines.

7.6.2. Source-specific uncertainties and time-series consistency

In the NFR sector 5.D the activity data uncertainty was estimated to be 10%; the emission factor uncertainty was estimated to be 125% (rating C) for NMVOC. Time series consistency is ensured by applying the same methodology for the whole time series.

7.6.3. Source-specific QA/QC and verification

Standard QA/QC procedures were carried out for this source category, i.e. activity data were checked for plausibility and time-series consistency; emission data were checked for completeness and for consistency between the calculation files, NFR tables and the IIR.

7.6.4. Source-specific recalculations including changes made in response to the review process

No recalculations were made in this category.

7.6.5. Source-specific planned improvements including those in response to the review process

Activity data were received from Annual reports from State statistical office. Data on number of people connected to latrines will be required from the relevant institution. The information and data currently are underestimated regarding the unavailability of data for number of latrines. No data were available in the Census conducted in 2021. EIT will search possibility for estimation of these emissions.

8. NATURAL SOURCES

8.1. Sector overview

This chapter describes emissions from (naturally or man-induced) burning of non-managed and managed forests and other vegetation, excluding agricultural burning of stubble, etc. This includes domestic fires (fuel wood, crop residue, dung and charcoal burning), as well as open vegetation fires (forest, shrub, grass and cropland burning).

In this Inventory Report, this chapter shows emissions, which originated from open vegetation forest fires.

This sector includes information and description of the methodologies applied for estimating emissions for NMVOC, NH₃, NOx, SOx, PM10, PM2.5, TSP CO and BC as well as references to activity data and emission factors concerning emissions coming from the forest fires for the period 1990-2022.

8.2. General description

Methodology

Tier 1 approach was used, using the given default Emission factors from the GB2019.

Completeness

The information on the completeness in this sector is presented in the following table.

Table 195 Completed/Not completed NFRs in sector Natural sources

NFR category	Completeness
11.B Forest fires	٧
11.A Volcanoes	NO
11.C Other Natural Sources	NE

8.3. Forest fires – NFR 11.B

8.3.1. Methodological issues

The Tier 1 approach for emissions from forest fires uses the general equation:

 $E_{pollutant} = \sum AR_{burned} \times EF_{pollutnat}$

Where:

E_{pollutant} = is the emission of a certain pollutant.

AR_{burned} = is the total area that has been burned/wood burned

EF_{pollutant} = is the emission factor for this pollutant.

8.3.1.1. Activity Data

The activity data for this sector are taken from the publication Forestry, 2000 –2014[35], published by the Statistical office, as well on data received on the requirement sent to the Public enterprise Macedonian forests on our request.

Table 196 Activity data for source category 11.B Forest fires

Year	Area burned [ha]	Wood burned [m3]	Wood burned [kg]
1990	NE	1 131	870 870
1991	NE	3 729	2 871 330
1992	NE	2	1 540
1993	NE	4 213	3 244 010
1994	NE	96 612	74 391 240
1995	NE	54 228	41 755 560
1996	NE	636	489 720
1997	NE	4 084	3 144 680
1998	NE	4 214	3 244 780
1999	NE	3 856	2 969 120
2000	4 807	711 782	548 072 140
2001	5 255	88 260	67 960 200
2002	5 482	24 661	18 989 186
2003	1 922	10 987	8 459 990
2004	1 798	4 322	3 328 171
2005	3 093	1 063	8 185 510
2006	3 594	12 978	9 993 060
2007	34 443	617 678	475 612 060
2008	15 046	35 652	27 452 425
2009	1 030	1 551	1 194 270
2010	4 725	2 033	1 565 410
2011	8 702	55 743	42 922 341
2012	19 312	102 160	78 663 200
2013	2 844	15 268	11 756 090
2014	1 150	19 152	14 747 040
2015	3 165	32 494	25 020 380
2016	2 166	17 573	13 531 749
2017	13 405	82 981	63 895 455
2018	2 823	5786	4 455 205
2019	15 675	95 940	73 872 414
2020	1 234	8138	62 66 260
2021	12 315	49 0023	377 318 080
2022	1 956	12 477	9 607 444

8.3.1.2. Emission factors

Calculation of emission parameters was used, and emission factors were taken from the GB 2023.

Table 197 Emission factors for source category 11.B Forest fires

Pollutant	Value	Unit	References
NOx	100	kg/ha area burned	GB 2023, 11B Forest fires, Table 3-1, pg. 9
со	3000	kg/ha area burned	GB 2023, 11B Forest fires, Table 3-1, pg. 9
NMVOC	300	kg/ha area burned	GB 2023, 11B Forest fires, Table 3-1, pg. 9
SOx	20	kg/ha area burned	GB 2023, 11B Forest fires, Table 3-1, pg. 9
NH ₃	20	kg/ha area burned	GB 2023, 11B Forest fires, Table 3-1, pg. 9
PM10	11	g/kg wood burned	GB 2023, 11B Forest fires, Table 3-1, pg. 9
PM2.5	9	g/kg wood burned	GB 2023, 11B Forest fires, Table 3-1, pg. 9
TSP	17	g/kg wood burned	GB 2023, 11B Forest fires, Table 3-1, pg. 9
ВС	9	%PM2.5	GB 2023, 11B Forest fires, Table 3-1, pg. 9

In the Statistical Yearbooks from 2000-2016 [22] there is data for wood burned in m³. Calculation is made for wood burned in kg using the equation: average density 0.77 kg/m³ *1000.

8.3.2. Source-specific uncertainties and time-series consistency

No data available for burned area for the period 1990-1999.

8.3.3. Source-specific QA/QC and verification

Macedonian Forests Company provided the data that was crosschecked with the data published in the SSO publication Forestry.

8.3.4. Source-specific recalculations including changes made in response to the review process

No recalculations were done in this sector.

8.3.5. Source-specific planned improvements including those in response to the review process

It is possible to investigate other natural sources but emissions coming from this category are not calculated in national totals and the rate of importance is considered low compared to other categories.

9. RECALCULATIONS AND IMPROVEMENTS

9.1. Recalculations

The following section summarizes the changes made since the previous submission for each sector (e.g. methodological changes, update of activity data, new emission sources). Detailed information per category can be found in the chapters per sector, above.

9.1.1. Explanation of recalculations per sector

The recalculation was based on the availability and correction of activity data due to use of final energy balans for 2021 as well as due to chage of EF from older version of Guidebook to 2023 version.

Explanations for recalculation per sector are given in the respective chapters. The tables indicating recalculations per pollutant can be found in tables 198-212.

Energy (NFR 1)

In the NFR sectors 1.A.2 - Combustion in manufacturing industries and 1.A.4 - Small combustion, final fuel consumption data has been used for 2021 in stead of preliminary data.

Transport (NFR 1.A.3)

No recalculations were performed in this sector.

Industrial processes and product use (NFR 2)

Recalculations were performed due change of EF from GB 2023 for 2.G due to updated activity data for export and import of tobacco and in case of 2.D.3.a and 2.D.3.h due to omitted excel linkage in the NFR excel calculated tool.

Agriculture (NFR 3)

Recalculations were performed due change of EF from GB 2023 for many categories in 3B. Namely fo NMVOC all emission factors were updated. For particulates only emission factors for 3.B.4.e, 3.B.4.g.iv, 3.B.4 and 3.B.1.b were same with those in GB 2019. For NH₃ most of emission factors are changed with exeption of emission factors in the categories: 3.B.2, 3.B.4.d, 3.B.4.gi and 3.B.4.giv.

Waste (NFR 5)

No recalculations were done in this sector.

Recalculations per pollutant

The following tables present the changes of emissions for all air pollutants (reported mandatory by North Macedonia), compared to the previous submission for 1990 and 2021 national totals.

Table 198 Recalculation difference of NOx emissions [kt] compared to submission in 2022

	NOv emissions [kt]	1990		2021	
	NOx emissions [kt]	Δkt	Δ%	Δkt	Δ%
1A1	Energy Industries	0.00	0%	0,00	0%
1A2	Manufacturing Industries & Construction	0.00	0%	-0,04	-1%
1A3	Transport	0.00	0%	0,00	0%
1A4	Other Sectors	0.00	0%	-0,05	-3%

	NOv emissions [lst]	1990		2021	
	NOx emissions [kt]	Δ kt	Δ%	Δ kt	Δ%
1B	Fugitive Emissions	0.00	0%	0,00	-
2	Industrial Processes and Product Use	0.00	0%	0,00	-7%
3	Agriculture	-0,18	-35%	0,39	66%
5	Waste	0,00	0%	0,00	0%
6	Other	0,00	-	0,00	-
<u>Total</u>	Total emissions	-0,18	0%	0,30	1%

Table 199 Recalculation difference of NMVOC emissions [kt] compared to submission in 2021

	NINAVOC amissiana [lat]	1990		2021	
	NMVOC emissions [kt]	Δ kt	Δ%	Δ kt	Δ%
1A1	Energy Industries	0.00	0%	0.00	0%
1A2	Manufacturing Industries & Construction	0.00	0%	0.00	0%
1A3	Transport	0.00	0%	0.00	0%
1A4	Other Sectors	0.00	0%	-0.04	-1%
1B	Fugitive Emissions	-1.48	-35%	-2.19	-44%
2	Industrial Processes and Product Use	0.00	0%	-2.12	-22%
3	Agriculture	0.18	3%	0.00	0%
5	Waste	0.00	0%	0.00	0%
6	Other	0.00	-	0.00	-
Total	Total emissions	-1.30	-3%	-4.36	-17%

Table 200 Recalculation difference of SO₂ emissions [kt] compared to submission in 2021

	SO- omissions [kt]	19	90	20	21
	SO ₂ emissions [kt]	Δ kt	Δ%	Δ kt	Δ%
1A1	Energy Industries	0.00	0%	0.00	0%
1A2	Manufacturing Industries & Construction	0.00	0%	0.06	1%
1A3	Transport	0.00	0%	0.00	0%
1A4	Other Sectors	0.04	5%	-0.01	-4%
1B	Fugitive Emissions	0.00	0%	0.00	-
2	Industrial Processes and Product Use	0.00	0%	0.00	0%
3	Agriculture	0.00	-	0.00	-
5	Waste	0.00	0%	0.00	0%
6	Other	0.00	-	0.00	-
Total	Total emissions	0.04	0%	0.04	0%

Table 201 Recalculation difference of NH₃ emissions [kt] compared to submission in 2021

NH₃ emissions [kt]		1990		2021	
		Δ kt	Δ%	Δ kt	Δ%
1A1	Energy Industries	0.00	0.00	0.00	-
1A2	Manufacturing Industries & Construction	0.00	0.00	0.00	-

	NUL amissions [ht]	19	90	20	21
	NH ₃ emissions [kt]	Δ kt	Δ%	Δ kt	Δ%
1A3	Transport	0.00	0.00	0.00	0%
1A4	Other Sectors	0.98	0.51	0.51	775%
1B	Fugitive Emissions	0.00	0.00	0.00	-2%
2	Industrial Processes and Product Use	0.00	-0.01	-0.01	-
3	Agriculture	0.14	0.10	0.10	1%
5	Waste	0.00	0.00006	0.00006	-
6	Other	0.00	0.00	0.00	-
Total	Total emissions	1.13	0.60	0.60	8%

Table 202 Recalculation difference of PM2.5 emissions [kt] compared to submission in 2021

	202 Recalculation difference of 1 W2.5 cmissions [90	2021	
	Manufacturing Industries & Construction Transport Other Sectors Fugitive Emissions Industrial Processes and Product Use	Δ kt	Δ%	Δ kt	Δ%
1A1	Energy Industries	0.00	-	0.00	0%
1A2	Manufacturing Industries & Construction	0.00	-	0.00	0%
1A3	Transport	0.00	-	-0.02	0%
1A4	Other Sectors	0.00	-	0.00	0%
1B	Fugitive Emissions	0.00	-	-0.09	16%
2	Industrial Processes and Product Use	0.00	-	0.04	-23%
3	Agriculture	0.12	-	0.00	24%
5	Waste	0.00	-	0.00	0%
6	Other	0.00	-	-0.07	-
Total	Total emissions	0.12	0%	0.00	-1%

Table 203 Recalculation difference of PM10 emissions [kt] compared to submission 2021

	DN410 emissions [kt]	19	90	20	21
	Manufacturing Industries & Construction Transport Other Sectors Fugitive Emissions Industrial Processes and Product Use	Δ kt	Δ%	Δ kt	Δ%
1A1	Energy Industries	0.00	-	0.00	0%
1A2	Manufacturing Industries & Construction	0.00	-	0.00	0%
1A3	Transport	0.00	-	0.00	0%
1A4	Other Sectors	0.00	-	-0.02	0%
1B	Fugitive Emissions	0.00	-	0.02	16%
2	Industrial Processes and Product Use	0.00	-	-0.41	-38%
3	Agriculture	0.49	-	0.15	-4%
5	Waste	0.00	-	0.00	0%
6	Other	0.00	-	0.00	-
Total	Total emissions	0.49	0%	-0.26	-8%

Table 204 Recalculation difference of TSP emissions [kt] compared to submission in 2021

	TSP emissions [kt]		1990		21
			Δ%	Δ kt	Δ%
1A1	Energy Industries	0.00	-	0.00	0%
1A2	Manufacturing Industries & Construction	0.00	-	0.00	0%
1A3	Transport	0.00	-	0.00	0%
1A4	Other Sectors	0.00	-	-0.02	0%
1B	Fugitive Emissions	0.00	-	0.05	16%
2	Industrial Processes and Product Use	0.00	-	-1.25	-38%
3	Agriculture	-0.40	-	-0.11	-4%
5	Waste	0.00	-	0.00	0%
6	Other	0.00	-	0.00	-
Total	Total emissions	-0.40	0%	-1.33	-8%

Table 205 Recalculation difference of CO emissions [kt] compared to submission in 2021

	CO emissions [kt]		1990		21
			Δ%	Δ kt	Δ%
1A1	Energy Industries	0.00	0%	0.00	0%
1A2	Manufacturing Industries & Construction	0.00	0%	0.04	1%
1A3	Transport	0.00	0%	0.00	0%
1A4	Other Sectors	0.00	0%	-0.12	0%
1B	Fugitive Emissions	0.00	0%	0.00	-
2	Industrial Processes and Product Use	0.00	0%	-0.11	-12%
3	Agriculture	0.00	-	0.00	-
5	Waste	0.00	0%	0.00	0%
6	Other	0.00	-	0.00	-
Total	Total emissions	0.00	0%	-0.19	0%

Table 206 Recalculation difference of Pb emissions [t] compared to submission in 2021

	Pb emissions [t]		90	2021	
			Δ%	Δ kt	Δ%
1A1	Energy Industries	0.00	0%	0.00	0%
1A2	Manufacturing Industries & Construction	0.00	0%	0.01	1%
1A3	Transport	0.00	0%	0.00	0%
1A4	Other Sectors	0.01	1%	0.00	0%
1B	Fugitive Emissions	0.00	-	0.00	-
2	Industrial Processes and Product Use	0.00	0%	0.02	3%
3	Agriculture	0.00	-	0.00	-
5	Waste	0.00	0%	0.00	0%
6	Other	0.00	-	0.00	-
Total	Total emissions	0.01	0%	0.02	1%

Table 207 Recalculation difference of Cd emissions [t] compared to submission in 2021

	Cd emissions [t]		1990		21
			Δ%	Δ kt	Δ%
1A1	Energy Industries	0.00	0%	0.00	0%
1A2	Manufacturing Industries & Construction	0.00	0%	-0.01	0%
1A3	Transport	0.00	0%	0.00	0%
1A4	Other Sectors	0.00	0%	0.00	-1%
1B	Fugitive Emissions	0.00	-	0.00	-
2	Industrial Processes and Product Use	0.00	0%	0.00	0%
3	Agriculture	0.00	-	0.00	-
5	Waste	0.00	0%	0.00	0%
6	Other	0.00	-	0.00	-
Total	Total emissions	0.00	0%	-0.01	0%

Table 208 Recalculation difference of Hg emissions [t] compared to submission in 2021

	Hg emissions [t]		1990		21
			Δ%	Δ kt	Δ%
1A1	Energy Industries	0.00	0%	0.00	0%
1A2	Manufacturing Industries & Construction	0.00	0%	0.00	1%
1A3	Transport	0.00	0%	0.00	0%
1A4	Other Sectors	0.00	0%	0.00	-9%
1B	Fugitive Emissions	0.00	0%	0.00	-2%
2	Industrial Processes and Product Use	0.00	0%	0.00	0%
3	Agriculture	0.00	0%	0.00	-
5	Waste	0.00	0%	0.00	0%
6	Other	0.00	0%	0.00	-
Total	Total emissions	0.00	0%	0.00	0%

Table 209 Recalculation difference of PCDD/ PCDF emissions [t] compared to submission in 2021

	PCDD/ PCDF emissions [t]		1990		21
			Δ%	Δ kt	Δ%
1A1	Energy Industries	0.00	0%	0.00	0%
1A2	Manufacturing Industries & Construction	0.00	0%	0.01	1%
1A3	Transport	0.00	-	0.00	-
1A4	Other Sectors	0.00	0%	-0.02	0%
1B	Fugitive Emissions	0.00	-	0.00	-
2	Industrial Processes and Product Use	0.00	0%	0.00	0%
3	Agriculture	0.00	-	0.00	-
5	Waste	0.00	0%	0.00	0%
6	Other	0.00	-	0.00	-
Total	Total emissions	0.00	0%	-0.01	0%

Table 210 Recalculation difference of PAHs emissions [t] compared to submission in 2021

	PAHs emissions [t]		90	2021	
			Δ%	Δ kt	Δ%
1A1	Energy Industries	0.00	0.00	0.00	0%
1A2	Manufacturing Industries & Construction	0.00	0.01	0.01	0%
1A3	Transport	0.00	0.00	0.00	-
1A4	Other Sectors	0.03	0.02	0.02	1%
1B	Fugitive Emissions	0.00	0.00	0.00	-
2	Industrial Processes and Product Use	0.00	0.00	0.00	0%
3	Agriculture	0.00	0.00	0.00	-
5	Waste	0.00	0.00	0.00	0%
6	Other	0.00	0.00	0.00	-
Total	Total emissions	0.03	0.02	0.02	0%

Table 211 Recalculation difference of HCB emissions [kg] compared to submission in 2021

	HCB emissions [kg]		1990		21
			Δ%	Δ kt	Δ%
1A1	Energy Industries	0.00	-	0.00	-
1A2	Manufacturing Industries & Construction	0.00	0%	0.00	4%
1A3	Transport	0.00	-	0.00	-
1A4	Other Sectors	0.00	0%	0.00	-8%
1B	Fugitive Emissions	0.00	-	0.00	-
2	Industrial Processes and Product Use	0.00	0%	0.00	0%
3	Agriculture	0.00	-	0.00	-
5	Waste	0.00	-	-0.01	-6%
6	Other	0.00	-	0.00	-
Total	Total emissions	0.00	0%	-0,01	0%

Table 212 Recalculation difference of PCB emissions [kg] compared to submission in 2021

PCR amissions [kg]		1990		2021	
	PCB emissions [kg]		Δ%	Δ kt	Δ%
1A1	Energy Industries	0.00	-	0.00	-
1A2	Manufacturing Industries & Construction	0.00	0%	0.01	1%
1A3	Transport	0.00	-	0.00	-
1A4	Other Sectors	0.95	1511%	0.48	2136%
1B	Fugitive Emissions	0.00	-	0.00	-
2	Industrial Processes and Product Use	0.00	0%	0.00	0%
3	Agriculture	0.00	-	0.00	-
5	Waste	0.00	-	0.00	0%
6	Other	0.00	-	0.00	-
Total	Total emissions	0.95	0%	0.49	0%

9.2. Planned Improvements

In the following table the planned improvements that are listed were recommended but were not implemented up to now and are planned to be implemented in the future. The improvements are structured as general issues and sumiries sector improvements, while detail sector improvements are given in Chapters 3-7.

Table 213 Planned improvements

Subject	Source	Rating	Improvement planned	Timeline/Co mments
Recalculations to be quantified for the whole time series. currently (i.e. Submission 2017) only for 1990 and last reporting year	NEIT	Medium	Depends on possibility to make it due to limited capacities, but it will be done for future submissions.	Planned to be implemented in the following submissions – it is planned to prepare whole time recalculation in IPA technical project during 2025-2026
Preparation of QA/QC plan	NEIT	Medium	There are a lot of QA/QC procedures and Matrix flow has been prepared but due to limited capacities QA/QC plan has not been yet prepared. it is concedered to be preparing in the forthcoming IPA project.	2025-2026
Implement higher Tier method for all the key categories.	NEIT	High	Tier 2 method is implemented for several categories and Tier 3 is implement in Transport and Energy production, However, there are stil many categories for which we use Tier 1 method	Higher Tier wethod was implemented for agriculture sector 3B by IIASA in EU 4 Green project but the results should be analysed and will be implemented for
Submission of projections data is planned for the following submissions.	NEIT	High		IPA technical project during 2025-2026 and to submit data in 2027
Impruvment of the information on gridded data	NEIT	Medium		Text will be improved with next submission of gridded data in 2025

9.3. Status of implementation of ERTs in-depth review recommendations (CLRTAP stage 3 review and if applicable NECD review)

9.3.1. Status of implementation of last and previous reviews

General	North Macedonia does not provide information on the condensable component of PM in the IIR. To the question on the issue North Macedonia answered that they will consider the issue and include it in a forthcoming project during 2021. The ERT recommends North Macedonia to include this project in the improvement plan in the next submission and to report the results of the project regarding condensable component in IIR Table A6.1 as requested in Reporting Guidelines Annex II.	CEIP/S3.RR/ 2020/North Macedonia	Medium	Implemented. Status on condensables is included in the IIR submitted in 2021 as Appendix 2
1.A.3.b	ERT noticed the inconsistency of data in road transport. There is a need to use the same methodology	CEIP/S3.RR/ 2016/North Macedonia	High	COPERT V model was used for emission calculations for period 2005-2022
1.A.3.b	ERT noted that the EF used for passenger cars gasoline fuel for Euro 0 vehicles in IIR Table 74 (Emission factor for source category 1A3bi Road Transport: Passenger cars used for calculation of emissions in the period 2014-2018 by use of Tier 2 methodologies) differs from the EF in Guidebook 2019. The ERT recommends that the Party adds an explanation for the use of this EF and documents the calculation of Euro 0 passenger cars' gasoline emissions in the IIR.	CEIP/S3.RR/ 2020/North Macedonia	Low	Explenation included in IIR
1.A3.b	The ERT identified some errors in the reported values such as CO from NFR 1A3b in the 2019 submission and in the 2020 submission. In the 2019 submission the value of CO emissions for 1991 was 35.295 kt, and in the 2020 submission the value of CO emission was 56.323 kt. During the review the Party explained that there was a mistake in the 2019 submission and that in the 2020 submission the value was correct.	CEIP/S3.RR/ 2020/North Macedonia	Low	Value was corrected.
1.A.2.gvii 1.A.4aii 1.A.3a 1.A.3b 1.A.3cii and 1.A.3ciii	Inconsietency in notationkeys and expelnation of the reasons for the use of the notation keys	CEIP/S3.RR/ 2020/North Macedonia	Low	Notation keys changed and explanation included in the IIR according to the recommendations given by Stage 3 review
1.A.3.a and 1.A.3.b	The ERT noted that BC emissions from 1A3ai (i), and 1A3aii (i), 1A3c, 1A3b emissions are not reported	CEIP/S3.RR/ 2016/North Macedonia § 20	Low	Black carbon emissions were calculated for these categories

1.A.3.c	The ERT recommended use of higher tier methodology	CEIP/S3.RR/ 2020/North Macedonia	Low	Tier 2 was implemented for 2020-2021 emissions due to avalible data
1.A.3.ei	The ERT recommends that the party contacts the gas supplier to find out if compressor stations are used in the FYROM and which technologies they use to maintain the pressure in the pipelines.	CEIP/S3.RR/ 2016/North Macedonia	Low	The National inventory team has contacted the gas supplier and recive information that stations are on electricity, therefore the notation key NO-Not occurring is inserted for the whole seria and this is explain in the IIR.
1.A.4.bii	Due to not available activity data for Residential: Household and gardening (mobile) same activity data are used for the last year. According to the last stage 3 review report number of household's maybe used ad surrogate data.	CEIP/S3.RR/ 2016/North Macedonia	Low	Recalculation was made in this sector using households' data as surrogate data
1.A.4.c.iii	The ERT recommends the Party to estimate and report the missing emissions or encourages the Party to include an explanation in the IIR on why emissions have not been estimated.	CEIP/S3.RR/ 2016/North Macedonia		Information on reason why these emissions are not estimated is included in this IIR
General	The ERT would like to point out that a Tier 2 or 3 methodology should be applied to all sources identified as key categories and thus would apply to all sources listed in tables 2 to 7.	CEIP/S3.RR/ 2016/		Currently Tier 2 methodologies are implemented only on limited NFR sectors but few more sectors in this submission. However, for most of the sectors. T1 calculations are possible due to data constraints. but further methodological improvements will be investigated. Tier 3 COPERT methodology for 2014-2018 has been implemented but data were not submitted in the reporting round. The submission at least for the period 2014- 2018 will be done in the next submission. The NERT has already prepared TAEIX expert mission application for calculation of historical emissions up to 2013 which has been approved

				by EU commission and is expecting that the mission will be carried out In period 2020-2022
General	The ERT wants to point out that where the older versions of Guidebook are used for emission calculations reasoning for that should be provided in the IIR because it is generally recommended to use the latest version of the Guidebook.	CEIP/S3.RR/ 2016/		The NIT has used 2023 EMEP Guidebook for a lot of sector, however due to limited activity data for some sectors EF from older Guidebooks are used.
General	During the review, the ERT pointed out that Tier 2 or higher tier methods should be used for key categories instead of Tier 1 methods that are currently used for most categories.	CEIP/S3.RR/ 2016/		The NIT has started to use Tier 2 for several sector in Transport, Industry and Agriculture.
General	In the inventory improvement plan, the FYROM indicated to carry out a trend assessment within the KCA in future years	CEIP/S3.RR/ 2016/		Trend assessment analysis was included in the IIR the following year after the stage 3 review was done.
General	The ERT recommends actual value of emissions instead of a plain zeroor replacement of the value with an appropriate notation key.	CEIP/S3.RR/ 2016/		This recommendation has been implemented.
General	The 2016 submission included LPS data for 2014 but no gridded emissions	CEIP/S3.RR/ 2016/		Gridded data for 2015 were reported in 2017 but information was not included in the IIR due to limited capacities.
1.A.3.b	For 2014, 2015 and 2016 data, Tier 2 methodology was applied. MEPP is planning to start with the use COPERT V model for calculating transport emissions in future.	CEIP/S3.RR/ 2016/Maced onia	High	COPERT V model was used for emission calculations for period 2005-2022
1.A.5.a	In the IIR it is stated that this sector is not estimated due to lack of activity data and that it seems not to have a major impact on the national emissions and will be calculated or categorized as IE when activity data or information are made available in the future submissions. The ERT recommends that North Macedonia includes this issue in their planned improvements and follows up on them.	CEIP/S3.RR/ 2016/North Macedonia	High	Emission from this sector are IE and information is included in the IIR
2.B.10.a	To the question on if it is assumed that any of the activities falling under the scope of NFR 2B10a exist in the territory of North Macedonia and in case they exist, can the Party estimate emissions using the guidance given by the ERT North Macedonia responded that the following activities existed in earlier	CEIP/S3.RR/ 2020/Maced onia	High	Emissions are estimated for period 1990-2005

	years or existed also currently: sulfuric acid (040401), Fertilizer do not know which one, Chlorine production - mercury cell (040413), Phosphate fertilisers (040414), Polyethylene low density (040506) and polyethylene high density (040507), Polyvinylchloride (040508).			
2.C.1	During the review, the ERT noted that according to the IIR (page 54, Table 8) NFR 2C1 is one of the Key categories for Hg emissions, and that on page 59 in Table 20, where the results of the level and trend assessment for Hg are presented, key Hg category 2C1, is missing	CEIP/S3.RR/ 2020/Maced onia	Medium	KCA was corrected
2.C.2 2.C.3 2.D.3.b	The ERT noted dips in the ferroalloys production activity data in 2001 of 85% and in 2009 of 64% and a jumps in 2004 of 346% (approx. 4.5 times) and in 2010 of 121% (approx. 4.2 times). The ERT noted jumps in the activity data of secondary aluminium production in 1999 of 84% and in 2002 of 54% and a dip in 2004 of 80%. The ERT noted a jump in all emissions in 1999 of 145% (approx. by 2.4 times) in road paving with asphalt. To a question on the issue North Macedonia answered that in the statistics the length of roads is the highest in 1999. The ERT recommends North Macedonia to include this information in the next submission	CEIP/S3.RR/ 2020/Maced onia	Low	Explenation incorporated in the report
2.C.7.c	the ERT asked North Macedonia to provide revised estimates for SO2 and TSP during the review	CEIP/S3.RR/ 2020/Maced onia	Low	Estimation provided and included in 2022 submission
2.D.3 g	During the review the ERT looked through the activities that are included in the inventory under the category 2D3g and noted that some of the activities that are covered in the Guidebook 2019 version are not included in the inventory of North Macedonia, such as: Asphalt blowing. Adhesive tape manufacturing. Pharmaceutical products manufacturing. Textile finishing and Manufacture of tires. In the IIR on p. 213, there is information about the plan to check the availability of data on Textile finishing and pharmaceutical products manufacturing and to report the related emissions in the following submissions. However, there is no information on why activities like Asphalt blowing. Adhesive tape manufacturing and Manufacture of tires are not included.	CEIP/S3.RR/ 2020/North Macedonia	High	Informamation is included in the IIR
2.K	The ERT noted that the notation key "NE" is reported for emissions of Hg and PCB from category 2K. The ERT noted that an EF based on population is given in the Guidebook.	CEIP/S3.RR/ 2020/Maced onia	High	Estimation provided and included in 2022 submission

2.D.3.a	The ERT also notes that the national	CEIP/S3.RR/	High	Estimation for this
	statistical office, wholesale businesses or industry associations may have the statistics on the consumption of different products that are part of domestic use and required for calculation of NMVOC emissions with the Tier 2b of the Guidebook. Alternatively, as presented on p.18 of Ch. 2D3a in Guidebook 2019, product consumption may be calculated from statistics on the production of these products, provided that import and export data are available to recalculate from production to consumption	2020/Maced onia		category provided and included in 2022 submission
3.B.4.g.ii	No explanation was received for the high broiler number in 2013. The ERT recommends that the Party further investigates the deviation for 2013 and encourages to complete the documentation of the statistics in the IIR with this information.	CEIP/S3.RR/ 2020/North Macedonia	Low	Implemented
3.D.a.2.a and 3.D.a.3	The ERT recommends that the Party estimate and report NH3 emissions from NFRs 3.D.a.2.a and 3.D.a.3 separately even if those emissions are still calculated using Tier 1.	CEIP/S3.RR/ 2020/North Macedonia	High	Implemented
3	However, while EFs are provided in Table 149 of the IIR, the methodology is not elaborated. The ERT encourages the Party to provide a more detailed description of the methodology for calculating particle emissions in the IIR	CEIP/S3.RR/ 2016/North Macedonia	Low	Implemented
3.D.1	Based on the data set provided by the Party the ERT concludes that the N contents of the fertilizers equal those of Guidebook and recommends that the Party moves to Tier 2 methodology using the proposed N contents	CEIP/S3.RR/ 2016/North Macedonia	High	Implemented
3.B	The ERT recommends that the FYROM estimate emissions from key categories by using at least the Tier 2 method provided in Chapter 3B of the Guidebook.	CEIP/S3.RR/ 2020/North Macedonia	Low	Implemented
3.B.3, 3.B4.gi, 3.B4.giii	Party has reported emissions for Black carbon (BC) as notation key "NE". Emissions of these pollutants are not expected from these categories as no methods are provided in the Guidebook. The ERT recommends using notation key "NA".	CEIP/S3.RR/ 2020/North Macedonia	Low	Implemented
3.B.3	Pb is reported as notation key "NE". Emission of this pollutant is not expected from this category as no methods are provided in the Guidebook, and "NA" is recommended.	CEIP/S3.RR/ 2020/North Macedonia	Low	Implemented
3.B.1.b	For 3B1b emissions of CO is reported as "NE". Emission of this pollutant is not expected from this category as no methods are provided in the Guidebook, and notation key "NA" is recommended	CEIP/S3.RR/ 2020/North Macedonia	Low	Implemented

3Da2a	The NH3 emissions from manure application to land (3Da2a) and from excreta deposited during grazing (3Da3) is wrongly described in the IIR to be included elsewhere "IE" under NFR 3B. In the NFR reporting tables the emission figures are reported under 3D. The ERT encourages North Macedonia to correct the information in the future IIR.	CEIP/S3.RR/ 2020/North Macedonia	Low	Implemented
3.Da.2a and 3.Da.3	the Party has reported emissions for Black carbon (BC) with the notation key "NE". Emissions of these pollutants are not expected from these categories and no methods are provided in the Guidebook. The ERT recommends using notation key "NA".	CEIP/S3.RR/ 2020/North Macedonia	Low	Implemented
3.D.1	The ERT notes that North Macedonia reports emissions NMVOC, PM2.5 and PM10 emissions from inorganic fertilizers under NFR 3D1. According to the 2016/2019 versions of the Guidebook there is no method for calculating these emissions. The ERT therefore recommends the Party to report the notation key "NA" instead of emission values.	CEIP/S3.RR/ 2020/North Macedonia	Low	Implemented
3.Da.1	The ERT also notes the for use of emission factors in NFR 3Da1 that in the 2016/2019 Guidebook versions refer to NFR 3De, Cultivated crops (NMVOC) and NFR 3Dc, Farm-level agricultural operations (PM2.5 and PM10). When no methods are given in the 2016/2019 Guidebook, the ERT recommend the use of "NA" in NFR 3Da1 for NMVOC, PM2.5 and PM10. In addition, the Party should estimate the currently missing NMVOC emissions from NFR 3De and PM2.5 and PM10 emissions from NFR 3Dc using the 2019 Guidebook version Table 3.1. For 3D1 the ERT recommends the Party to replace the emission values with the notation key "NA".	CEIP/S3.RR/ 2020/North Macedonia	High	Implemented
3.D.1	The Party is using emission factor for NOx emissions from inorganic fertilizer from the 2013 version of the Guidebook, but the IIR is referring to EF from the 2016 Guidebook. Due to consistency the ERT recommend the Party to always use updated EFs from the same and the latest Guidebook version and to recalculate the emissions for the time series to the next submission. During the review North Macedonia provided a revised estimate for NOx emissions from NFR 3D1 using updated emission factor as presented in Annex I to this review report.	CEIP/S3.RR/ 2020/North Macedonia	High	Implemented
3.D.f	The ERT recommends North Macedonia to provide a transparent description of the use of the notation key "NO", providing all	CEIP/S3.RR/ 2022/North	Medium	The required information is inserted in the IIR

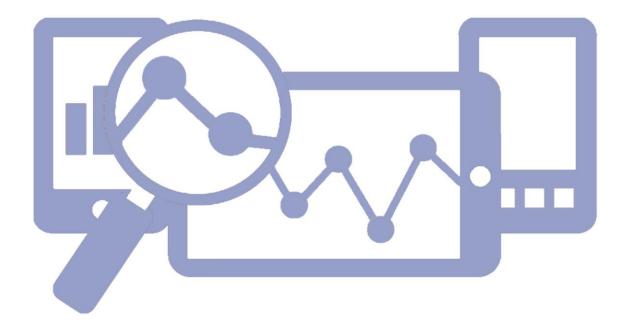
	relevant documentation in the 2024 submission of the IIR. Macedonia			
3.Da.1	The ERT recommends that the Party clearly document the procedure used to calculate emissions from NFR 3Da1, Inorganic Nfertilisers.	CEIP/S3.RR/ 2022/North Macedonia	High	The required information is inserted in the IIR and source of EF for NOx is changed
5.A	The ERT sent technical correction and the Party accepted to include it in the next submission. The ERT recommends North Macedonia to correct the emission factor for PM2.5 in line with the revised estimate sent to the ERT during the review in the next submission. The ERT recommends the Party to provide detailed explanation of the methodology used for calculation of emissions in the IIR of the next submission.	CEIP/S3.RR/ 2020/North Macedonia	High	EF was corrected and detailed explanation of the methodology used for calculation of emissions in the IIR.
5.C1.biii	The ERT recommends North Macedonia to correct these PCDD/F emissions in the next submission according to the revised estimate sent to the ERT. The ERT noted that no information is provided in the IIR regarding the reference to the source of emission factors of SOx, Hg, As and Ni. asked North Macedonia if it possible to use a higher tier method to estimate emissions from this category.	CEIP/S3.RR/ 2020/North Macedonia	High	The revised estimates were included and reference for the source of SOx, Hg, As and Ni. Was provided in the IIR. Higher method was implemented.
5.D.1	The ERT noted that emissions of PAHs were calculated using other emission factors than listed in the IIR.	CEIP/S3.RR/ 2020/North Macedonia	Medium	Calculations for PAHs were corrected
5.D.1	NH3 emissions should be reported under NFR 5D1, and that under NFR 5D2 both SNAPs are listed for domestic and industrial wastewater treatment, and that they can reallocate the emissions from domestic wastewater treatment to the category 5D1 if necessa	CEIP/S3.RR/ 2020/North Macedonia	Low	Emissions were realocated as suggested by the ERT
5.D.2	The ERT noted significant decrease and subsequent increase of emissions of NMVOC in the category 5D2, but that no explanation was provided in the IIR. The ERT recommends the Party to report data on domestic and industrial wastewater handling separately and to explain in the IIR the decrease of NMVOC emissions from industrial wastewater handling in 2017	CEIP/S3.RR/ 2020/North Macedonia	Low	Emissions from 5D1 and 5D2 were reported separatly abd explation of the variations of the trend in the IIR was included.
5.E	The ERT noted that emissions under the category 5E were reported as NO although this category includes accidental fires of cars, of detached/undetached houses and administrative, industrial buildings.	CEIP/S3.RR/ 2020/North Macedonia	Low	Notation key was changed

9.3.2. Progress a schedule for implementation

Those recommendations given by the stage 3 review that have not implemented by now are listed in the table below

Table 214 Sectorial improvements planned

NFR Category	Subject	Source	rating	Timeline/Comme nts
1.A.3.b	ERT noted that the EF used for passenger cars gasoline fuel for Euro 0 vehicles in IIR Table 74 (Emission factor for source category 1A3bi Road Transport: Passenger cars used for calculation of emissions in the period 2014-2018 by use of Tier 2 methodologies) differs from the EF in Guidebook 2019. The ERT recommends that the Party adds an explanation for the use of this EF and documents the calculation of Euro 0 passenger cars' gasoline emissions in the IIR.	CEIP/S3.RR/2020/Nort h Macedonia	High	The Tier 3 COPERT V method needs to be implemented for calculations for period 1990-2004. Due to limitation of reliable activity data this activity needs to be implemented with technical support. It is considered to use Tier 3 method for the historical data during expert missions in the forthcoming IPA II project (2025-2026) within the activities for improvement of emission inventory
1.A.3.c	Tier 2 method was used only for 2020- 2021 if data are gathered the Tier 2 method will be implemented for previous years	CEIP/S3.RR/2020/Nort h Macedonia	Low	The NEIT did not find proper surrogate data to calculate historical emissions. The possibility to find proper technical data will be consider during expert missions in the forthcoming IPA II project (2025-2026) within the activities for improvement of emission inventory
1.A.4.bi	The ERT notes that Tier 1 methodology is still applied for key categories in the following sectors: 1A4bi: NMVOC, PM2.5, PM10, TSP, CO, BC, Cd, Cu, Ni, Zn, PCDD/F, PAHs	CEIP/S3.RR/2020/Nort h Macedonia	High	IIASA engaged in the frame of the Eu 4 Green project is making improvement and use of Tier 2 methodology for this sector. Results will be implemented in the next submission.
2.D.3.b	The ERT noted the possibility for underestimation of NMVOC, TSP, PM10, PM2.5 and BC emissions for the historic period 1990-2014 and asked for a time frame for the investigation and correction of these activity data.	CEIP/S3.RR/2020/Nort h Macedonia	High	The national emission inventory team has found update activity data in MAKSTAT database for the period 2010-2022 and will make recalutaion of these emissions in the next submission and will search for historical activity data or use method for time seria


NFR Category	Subject	Source	rating	Timeline/Comme nts
				consistency for thr next submission.
2.D.3.d	The ERT notes that using a Tier 1 method is not best practice for a key category and could result in an over- and/or underestimate of emissions and that according to the Reporting Guidelines paragraph 21 Parties should make every effort to use a Tier 2 or higher (detailed) methodology, including country-specific information for key categories. The ERT notes that that the relevant activity statistics include: the number of painted buses/cars/trucks to calculate the emissions for vehicle coatings; the mass of wire coated to calculate the emissions for wire coating; the mass of leather coated to calculate the emissions for leather finishing; the use of paint to calculate the emissions for all other sources like paint application-construction and buildings, paint application-domestic use (except SNAP 060107), wood coating, coil coating, vehicle refinishing, or other non-industrial paint application).	CEIP/S3.RR/2020/Nort h Macedonia	High	The National emission inventory team has found activity data in the national statistics on of produced buses and application of paint in contructiom. There are no activity data available on wood coating, coil coating, vehicle refinishing, or other non-industrial paint application). National emission inventory team will make emission calculations with the continue to search available data and improve calculation in this category in 2025 with the support of technical expertsd from IPA II technical project.
2.D.3.e	The ERT notes that NMVOC emissions can be calculated using solvents statistics on the sales of cleaning products and the Tier 2 method according to Guidebook 2019. The ERT notes that according to the Guidebook the most common organic solvents for vapour cleaning are: methylene chloride (MC), tetrachloroethylene (PER), trichloroethylene (TRI) and xylenes (XYL) that normally require a closed cleaning machine while for batch cold cleaners the primary solvents used are mineral spirits, Stoddard solvents (white spirit) and alcohols like propylene glycol. ERT recommends the Party to move to the Tier 2 method for the next submission or as soon as possible or meanwhile to include this improvement into the improvement plan with clear steps and schedule and to report on progress of the work in the next submissions	CEIP/S3.RR/2020/Nort h Macedonia	High	The National emission inventory team has found data of the named solvents for the period 2012-2022 in the MAKSTAT database. Historical data will be searched in the hard copy statistical yearsbook or suitable method for time consistency will be use. Calculation of emissions from available data will be reported in the next submission.

NFR Category	Subject	Source	rating	Timeline/Comme nts
2.D.3.i and 2G	The ERT noted that North Macedonia did not include emissions estimates in the inventory from activities like Use of fireworks, Other product use (concrete additive, cooling lubricant, lubricant, pesticide and other industrial application of solvents in products) and Barbeque, which fall under the scope of NFR 2G andGlass wool enduction, Mineral wool enduction, Application of glues and adhesives, Underseal treatment and conservation of vehicles, Vehicles dewaxing and Other (preservation of seeds,), which fall in the scope of NFR 2D3i.The ERT recommends North Macedonia to include the missing information on sources included as well as a full documentation of the methods used in calculation of emissions in the next submission of IIR.	CEIP/S3.RR/2020/Nort h Macedonia	High	The national inventory team has searched data and find out that data on concreate additive and pesticides exist, however data on Vehicles dewaxing and Other (preservation of seeds,), use of fireworks are not available in the National statistics. Activities like Glass wool enduction, Mineral wool enduction are not occuring. Request for data on the slolvent use for aircraft deicing are required from the two existing airports but data are not received yet. The improvement of this category will be carried out in the forthcoming Technical IPA II project on implementation on air quality directives.
2.D.3.g	During the review, the ERT looked through the activities that are included in the inventory under the category 2D3g and noted that some of the activities that are covered in the Guidebook 2019 version are not included in the inventory of North Macedonia, such as: Asphalt blowing. Adhesive tape manufacturing. Pharmaceutical products manufacturing. Textile finishing and Manufacture of tires. In the IIR on p. 213, there is information about the plan to check the availability of data on Textile finishing and pharmaceutical products manufacturing and to report the related emissions in the following submissions, however, there is no information on why activities like Asphalt blowing. Adhesive tape manufacturing and Manufacture of tires are not included.	CEIP/S3.RR/2020/Nort h Macedonia	High	It is considered to use Tier 2 method during expert missions in the forthcoming IPA II project (2025-2026) within the activities for improvement of emission inventory. The national emissi inventory team has started to gather data on the solvents used for pharmaceutical products manufacturing. However historical data before 2002 are missing and need to be gathered or method for time consistency will be used. Adhesive tape manufacturing is not occurring.

NFR Category	Subject	Source	rating	Timeline/Comme nts
				Data on asphalt blowing are included. Manufacture of tires is not occuring No data were found on the textile finishing. It is planned to improve this category in the next submission.
2.A.5.a	According to IIR p. 183 North Macedonia doesn't have a plan for improvement in category 2A5a. However, according to page 54 Table 8. 2A5a is a Key category for TSP in 2018. Since this is a key category. The ERT notes that using a Tier 1 method is not best practice and could result in an over and/or underestimate of emissions. The ERT is of the view that the use of a Tier 2 method could be possible for North Macedonia if activity data can be stratified according to the different techniques. 1.A.5.a In the IIR it is stated that this sector is not estimated due to lack of activity data and that it seems not to have a major impact on the national emissions and will be calculated or categorized as IE when activity data or information are made available in the future submissions. The ERT recommends that North Macedonia includes this issue in their planned improvements and follows up on them.	CEIP/S3.RR/2016/Nort	High	No activity data are avalibale currently to use Tier 2 methodology. The NEIS system for environmental data gathering is currently under establishement and it is expected to recive more avalible data through it. The NEIS is in phase of tesating for possible bugs, until end of 2024. Data by industry will be gathered in this system officially from 2025.
General	The ERT would like to point out that a Tier 2 or 3 methodology should be applied to all sources identified as key categories and thus would apply to all sources listed in tables 2 to 7.	CEIP/S3.RR/2016/	High	Currently Tier 2 methodologies are implemented only on limited NFR sectors but few more sectors in this submission. However for most of the sectors, T1 calculations are possible due to data constraints, but further methodological improvements will be investigated through use of TAEIX program and international technical project

NFR Category	Subject	Source	rating	Timeline/Comme nts
3.D.a.2.a and 3.D.a.3	NOx emissions from NFRs 3Da2a and 3Da3 are reported as "IE". However, it is possible to calculate the emissions using emission factors and activity data, if the Party choose to implement a Tier 2 method using the Nitrogen-flow tool.	CEIP/S3.RR/2020/Nort h Macedonia	High	The National team is planning to conduct a TAEIX expert mission for use of higher Tier methods in this sector in 2024. Improved emissions will be reported in 2025 submission.
3.B.1.a,3.B.1.b	The ERT recommends North Macedonia to use a Tier 2 or higher method for the calculation of NH3 emissions from 3B by the 2025submission. Changing to a Tier 2 method can be facilitated using the N-flow tool available athttps://www.eea.europa.eu/publications/emep-eea-guidebook-2019/part-b-sectoral-guidance-chapters/4-agriculture/manuremanagement-n-flow-tool/view	CEIP/S3.RR/2022/Nort h Macedonia	High	The higher Tier method was implemented by IIASA in the frame of EU 4 Green project for some categories in agriculture. The National team is also planning use of TAEIX expert mission for use of higher Tier methods in this sector. Improved emissions will be reported in 2025 submission.
3.B.1.a, 3.B.1.b	The ERT recommends North Macedonia to use a Tier 2 or higher method for the calculation of NMVOC emissions from 3B1a Dairy and 3B1b Non-dairy cattle by the 2025 submission.	CEIP/S3.RR/2022/Nort h Macedonia	High	The higher Tier method was implemented by IIASA in the frame of EU 4 Green project for some categories in agriculture. The National team is planning to conduct a TAEIX expert mission for use of higher Tier methods in this sector in 2024. Improved emissions will be reported in 2025 submission.
3.D.a.1	The ERT encourages North Macedonia to use the latest version of the EMEP/EEA Guidebook for the estimation of emissions for the whole timeseries, and implement this as soon as possiblelt is also recommended that the Party should use a Tier 2 method from the latest version of the EMEP/EEA Guidebook, which provides more accurate emission factors based on best practices for estimating emissions for a sector which is a key category	CEIP/S3.RR/2022/Nort h Macedonia	High	The National team is planning to conduct a TAEIX expert mission for use of higher Tier methods in this sector in 2024. Improved emissions will be reported in 2025 submission.
3.D.e	The ERT recommends North Macedonia to use a Tier 2 or higher method for the	CEIP/S3.RR/2022/Nort h Macedonia	Medium	The National team is planning to conduct a TAEIX expert

NFR Category	Subject	Source	rating	Timeline/Comme nts
	calculation of NMVOC emissions from 3De, Cultivated crops and provided the transparent description of the methodology in North Macedonia IIR by the 2025 submission			mission for use of higher Tier methods in this sector in 2024. Improved emissions will be reported in 2025 submission.

10. PROJECTIONS

The requirement for preparation of national emission projections comes from the:

- Obligation under the Gothenburg protocol (Republic of North Macedonia is a party to the protocol starting from 2014) projections data for 2020, 2025 and 2030 under the Gothenburg Protocol are requirement under the Article 7 of the Gothenburg Protocol and as outlined in the Guidelines for Reporting Emissions and Projections Data under the Convention. ECE/EB.AIR/125; Emission projections need to be sent by 15 March 2017 and every two years thereafter
- Need to prepare National air pollution control program under NEC directive 2016/2284/EU
- Transposition of the revised NEC directive 2016/2284/EU in the national legislation.

Current situation

Projections for the main pollutants SO_x, NO_x, NMVOC and NH₃ have been calculated within the National Program for Progressive Reduction of Emission for the period 2012-2020 [45] which has been prepared within the framework of Western Balkan project "Ratification and implementation of the three last protocols under CLRTAP". This program has been officially published in 2012.

Within this program two scenarios have been developed: The basic scenario, which relies on policies and measures, planned by the year selected as baseline year. For the development of this scenario an official document, applicable legislation, and year of fulfillment of individual emission reduction measures have been used. Mainly, energy strategic documents were considered. No serious analyses were made on the strategic documents in the industrial, waste and agriculture sector.

A second scenario with measures has been developed based on the Strategy for Energy Development in the Republic of North Macedonia by 2030, The Energy Balance of the Republic of North Macedonia for the period 2012 to 2016, the Environmental Assessment of Strategy, the Strategy for Energy Efficiency Promotion in the Republic of North Macedonia by 2021, the Baseline Study on Renewable Energy Sources in the Republic of North Macedonia and the National Strategy for Transport and others. These Scenarios were compared with the model scenario developed by CEIP (Centre on Emission Inventories and Projections). No scenario with additional measurements has been developed.

Total emission projections with measures have been reported in 2013. However, there is a need of recalculation of SOx, NMVOC and NH₃ emission projections.

In accordance with the international agreement with Energy community and Decision D/2013/05/MC-EnC, the Ministerial Council provided the possibility for Contracting Parties to use the option for national emission reduction plan (NERP) as an alternative to setting the emission limit values of Directive 2001/80/EC for each combustion plant individually from 01.01.2018 until 31 December 2027, as well as to define national emission ceilings for LCPs. This approach has been chosen by Republic of North Macedonia and NERP has been prepared within two TAEIX expert missions in the period October 2014-November 2015. The plan includes emission ceilings for eight plants (Three power plants. two heating plants and one oil refinery, which is currently out of work). The Government in December in 2015 has officially adopted this draft plan. This plan contains emission ceilings for the period 2018-2027 for the following pollutants NOx, SOx and dust. The plan was sent in January 2016 to be checked by Energy Community experts. After the revision the comments were incorporated by

the national working group, responsible for monitoring the implementation of the plan. The revised plan has been approved by the Government in April 2017. The MoEPP is actively monitoring the implementation of the National Emissions Reduction Plan from large combustion plants in the energy sector. According to this Plan, the country is compliant with the national ceiling for nitrogen oxides for 2022, but not for dust and sulfur oxides. Furthermore, defined measures for reduction of projections for the GHG pollutants for 2025, 2030 and 2035 (Basic scenario, Scenaro with measures and additional measures) set in the National plan for energy and climate for North Macedonia will also be taken into account when projections for NEC pollutants are prepared [46].

This plan will have impact on the current national emission projections for NOx, SOx and dust in this plan will also be considered in the process of calculation of 2030 projections for SOx, NOx and PM2.5.

Regarding the inventory within the Twining project "Further strengthening the capacities for effective implementation of the acquis in the field of air quality", 6 expert missions have been used for preparation of the framework for future calculation of projections in the following sectors: energy production, energy used in households, transport, industry, waste, and agriculture. The recommendations from all experts were summarized in a Guidance document for preparation of the projections.

One of the planned activities of the project technical project under IPA 2 program "Support for implementation of air quality directives", is further improvement of the national air emission inventory and preparation of National emission projections under NEC directive 2016/2248/EC. The project was evaluated during 2021 and then canceled by the EU delegation in April 2022. The project was reanaunced and the second phase of evaluation expected to begin during April/May 2024. If the project evaluation is finished succefully it is planned that the agreement with the chosen Contractor to be signed at the end of the year, and the activities which include improvement of emission inventory in different sector and preparation of projections for 2030 will start in 2025.

Moreover, in the working package 1-10 in the frame of Regional EU4 Green Project an activity is planned for preparation of the reduction commitments under the amended Gothenburg protocol and Annex 2 od NEC directive. The project is is in phase of implementation. Activities for improvement of emission inventory are finalized for Waste, Agriculture and Domestic heating for the base year 2005. It is expected that reduction potentials commitments will be finalized at the end of the year.

11. REPORTING OF GRIDDED EMISSIONS AND LPS

Republic of North Macedonia has reported gridded and LPS data in 2021 for 2019 reporting year and they are available on CDR Eionet web page as well gridded data for 2019 but reported with delay after the deadline of 1 May. In this IIR a short description on the methodology of calculation of these emissions are presented.

Within the last Twining project in 2015 two expert missions on calculations of gridded emissions were carried out. It was decided to prepare gridded emissions for the new EMEP grid resolution (0.1°x0.1° long/lat). Within these missions several proxy tools were developed:

- DISTRIBUTE_MUNICIPAL_VALUES_via_PROXY_GRID.xlsm
- DISTRIBUTE REGIONAL VALUES via PROXY GRID.xlsm
- DISTRIBUTE_TOTAL_VALUES_via_PROXY_GRID.xlsm

- LPS to GRID.xlsm
- Road_proxy_calculation.xlsm
- Farm_and_farmland_proxy_calculation.xlsm

Aproxy map to distribute road transport emissions was derived from a road network map for Macedonia from "MapCruzin.com". Therefore, the road network was intersected with the EMEP grid (by using "ArcGis") to get the road share per cell. The length of these road fractions was then calculated within the GIS application.

The attribute table was exported from "ArcGis" and imported to Excel to proceed with the further steps. With the road type, which is an attribute of the road network map, an additional weighting was implemented (e.g. motorways were weighted double in comparison with other roads and residential streets were weighted only half). Then these fractions of proxy values, based on the road length and the type weighting, were aggregated to the 315 EMEP grid cells and multiplied with a population density proxy grid which was derived from SEDAC/CIESIN. The result is a proxy grid which considers the road network (including different road types) and the population density to distribute road transport emissions.

In addition, the population grid from SEDAC/CIESIN was adjusted regarding newer municipal population data from Macedonia.

A proxy map to distribute emissions from the agricultural sector was derived from a land use map for Macedonia from "MapCruzin", Therefore the areas with the types "farm", "farmland" and "farmyard" were intersected with the EMEP grid (by using "ArcGis") to get the area share per cell. The attribute table was then exported from "ArcGis" and imported to Excel where these area fractions were aggregated to the 315 EMEP grid cells to get a distribution grid for agricultural emissions.

In addition, a tool was programmed, which was able to sum up the emissions from a list of large point sources to the allocated EMEP grid cells.

These tools were used by national experts to calculate emissions per grids. Furthermore, emissions from major installations for production of heat electricity and industry for production of cement were taken into account. Ferro metals and Incineration of medical waste as well as big swine and poultry farms were allocated in the grids according their coordinates. Fugitive emissions were distributed using land cover and petrol and mines network.

Additionally, data for small emission were distributed using the population proxy calculations exclude households connected to district heating and for emissions coming from administrative capacities emissions from National cadaster were used.

Population data were used to distribute emissions coming from use of solvents and municipal waste. Emissions from aviation and national navigation are minor and were distributed according the location of airports and boat ports. For this year reporting calculation of emissions per grid from 2.K were added.

With regards to LPS reporting in 2019, emissions from 10 LPS were reported. From them, six are coming from the category 1.A.1a for electricity and heat production, one in category 2.A.1, two in 2.C.1, and one in 2.C.2. Data on CO, NOx, SOx emissions were calculated mainly by the installations taken into account monthly emissions measurements while emissions from other pollutants are

calculated by using EF from the Guidebooks. Implied emission factors were used for calculations of TSP emissions from the installation for production of ferroalloys and for one power plant. IEF for NOx and SOx emissions were used for calculations of emissions from one power plant. Three of LPS are currently not in operation. For installations for production of cement, steel and ferronickel Tier 2 methodology for calculation was used. For other installations Tier 1 methodology was used for the other pollutants.

The same methodology has been used for calculation of emissions coming for gridded emissions in 2021. No gridded data or LPS data were reported in 2024. With regards to LPS reporting, currently MEPP is testing National environmental information system and th gathering of LPS data as well as the reporting towards EEA will be included in this system. We expect that the quality of reported data to be improved once system is established.

12. ADJUSMENTS

Executive Body decisions 2012/3 and 2012/12 concern adjustments to emission reduction commitments or to inventories under the 2012 amended Gothenburg Protocol. The decisions include the detailed lists of supporting information which must be provided in an IIR or in a separate report. Until now, Republic of North Macedonia did not apply for adjustment procedure.

IIR APPENDEXIS

Appendix 1: Key category analysis

Appendix 2: Summary of whether source sectors use PM emission factors that include/exclude the condensable component

Appendix 3: Further elaboration of completeness, uses of NE & IE and (potential) sources of air pollutant emissions excluded

Appendix 4: National energy balance for 2022

Appendix 5: National totals and NFR sector emissions for 2022

REFERENCES

- [1] Law on Ambient Air Quality (Official Gazette of RM No. 67/2004, 92/2007, 83/2009, 35/10, 47/11, 100/12, 163/13, 10/15, 146/15,151/21)
- [2] http://www.ceip.at/fileadmin/inhalte/emep/2014_Guidelines/ece.eb.air.125_ADVANCE_ VERSION reporting guidelines 2013.pdf
- [3] Stage 3 review report North Macedonia. UN. November 2020
 https://www.ceip.at/fileadmin/inhalte/ceip/00 pdf other/2020 s3/mk s3 rr 2020 final.pdf

 Stage 3 review report North Macedonia. CEIP/S3.RR/2023/NORTH MACEDONIA
 04/10/2023

 https://webdab01.umweltbundesamt.at/download/review/MK/2023/MK_2023_Stage3RR_FINAL.pdf?cgiproxy_skip=1
- [4] MAKSTAT database http://makstat.stat.gov.mk/PXWeb/pxweb/en/MakStat/?rxid=46ee0f64-2992-4b45-a2d9-cb4e5f7ec5ef
- [5] https://treaties.un.org/Pages/ViewDetails.aspx?src=TREATY&mtdsg_no=XXVII-1&chapter=27&clang=_en
- [6] http://www.unece.org/fileadmin/DAM/env/lrtap/full%20text/ece.eb.air.104.e.pdf
- [7] http://www.unece.org/fileadmin/DAM/env/documents/2013/air/eb/ECE.EB.AIR.114_ENG.pdf
- [8] http://www.unece.org/index.php?id=33605#/
- [9] Rulebook on the methodology for inventory and establishment of the levels of polluting substances emission into the atmosphere in tons per year concerning all types of activities. as well as other data to be submitted to the European Monitoring and Evaluation Program (EMEP), Official Gazette of the Republic of Macedonia No. 142/07
- [10] Rulebook on the amounts of emission ceilings of polluting substances for the purpose of setting projections for a certain period concerning the polluting substances emission reduction at annual level (Official Gazette of RM No.2/2010.156/11)
- [11] CLRTAP-Macedonia's Informative Inventory Report, 2004, MEPP, March 2006
- [12] EMEP/CORINAIR Emission Inventory Guidebook–2006
- [13] SNAP Selected Nomenclature on Air Pollutants
- [14] CLRTAP-Macedonia's Informative Inventory Report, 2008, MEPP, March 2010
- [15] Stage 3 review report FYR of Macedonia, UN, November 2011
 http://www.ceip.at/fileadmin/inhalte/emep/pdf/2011/MK_Stage3_Review_Report_2011.pdf
- [16] EMEP/EEA air pollutant emission inventory guidebook 2009
- [17] EMEP/EEA air pollutant emission inventory guidebook 2013
- [18] EMEP/EEA air pollutant emission inventory guidebook 2016
- [19] EMEP/EEA air pollutant emission inventory guidebook 2019
- [20] UNECE/CEIP/S3.RR/2016/Macedonia19/10/2016
- [21] Law on environment Official Gazette of RM num. 53/2005, 81/2005, 24/2007, 159/2008, 83/09 48/10, 124/10, 51/11, 123/12, 93/13, 44/15 and 151/21.

- [22] Statistical Yearly book of Republic of North Macedonia, 2000-2020, SSO, Skopje http://www.stat.gov.mk/PublikaciiPoOblast.aspx?id=34&rbrObl=37
- [23] Energy balance 2009-2022 http://www.stat.gov.mk/PrethodniSoopstenijaOblast.aspx?id=64&rbrObl=21
- [24] Energy statistics 2000-2010 http://www.stat.gov.mk/PrikaziPoslednaPublikacija.aspx?id=61
- [25] MAKSTAT database- Energy data http://makstat.stat.gov.mk/PXWeb/pxweb/en/MakStat/?rxid=46ee0f64-2992-4b45-a2d9-cb4e5f7ec5ef
- [26] State Statistical Office of the Republic of North Macedonia, Transport and other communications. 2007-2015 http://www.stat.gov.mk/PublikaciiPoOblast.aspx?id=15&rbrObl=24
- [27] MAK STAT database for transport http://makstat.stat.gov.mk/PXWeb/pxweb/en/MakStat/?rxid=46ee0f64-2992-4b45-a2d9-cb4e5f7ec5ef
- [28] State Statistical Office of the Republic of North Macedonia. Industry in the Republic of North Macedonia. 2002-2015)http://www.stat.gov.mk/PublikaciiPoOblast.aspx?id=8&rbrObl=19. Makstat database http://makstat.stat.gov.mk/PXWeb/pxweb/mk/MakStat/?rxid=46ee0f64-2992-4b45-a2d9-cb4e5f7ec5ef
- [29] MAKSTAT DATABASE on industry
 http://makstat.stat.gov.mk/PXWeb/pxweb/en/MakStat/MakStat_Industrija_Bazna2015/525_Proi
 zvodstvo na ind proizv po godini ml.px/?rxid=46ee0f64-2992-4b45-a2d9-cb4e5f7ec5ef
- [30] http://minerals.usgs.gov/minerals/pubs/country/europe.html#mk
- [31] State Statistical Office of the Republic of North Macedonia, External trade in the Republic of North Macedonia, 2006-2014. http://www.stat.gov.mk/PublikaciiPoOblast.aspx?id=14&rbrObl=23
- [32] State Statistical Office of the Republic of North Macedonia, Field crops, orchards and vineyards, 2007-2017
 http://www.stat.gov.mk/PrikaziPoslednaPublikacija.aspx?id=5
- [33] State Statistical Office of the Republic of North Macedonia. Livestock. 2007-2015. http://www.stat.gov.mk/PrikaziPoslednaPublikacija.aspx?id=6. http://makstat.stat.gov.mk/PXWeb/pxweb/en/MakStat/?rxid=46ee0f64-2992-4b45-a2d9-cb4e5f7ec5ef;
- [34] MAKSTAT agriculture data http://makstat.stat.gov.mk/PXWeb/pxweb/en/MakStat/?rxid=46ee0f64-2992-4b45-a2d9-cb4e5f7ec5ef
- [35] State Statistical Office of the Republic of North Macedonia, Forestry, 2000-2014
- [36] Census of agriculture, 2007, Individual agricultural holdings grouped by total available land by regions, 2008, Skopje
- [37] Feasibility study on drisla landfill, book 1of 2, General overview, Final report, August, 2011
- [38] "Drisla" landfill web page http://drisla.mk/page_detail.asp?IID=3&ID=25
- [39] PRTR database in MEPP ripz.moepp.gov.mk/
- [40] The Republic of Serbia Informative Inventory Report to LRTAP Convention, Belgrade, 2012
- [41] The Republic of Croatia Informative Inventory Report to LRTAP Convention, Zagreb, 2012

- [42] LCP data on CDR eionet database https://cdr.eionet.europa.eu/mk/eu/lcp_ied/envxlw8hq/
- [43] EEA, Municipal Waste Management in FYROM (2013),page 7-8
- [44] GDP per capita of Former Yugoslavia by Angus Maddison (https://www.quandl.com/data/MADDISON/GDPPC_YUG_NEW-GDP-Per-Capita-of-Former-Yugoslavia-New-Estimate)
- [45] National program for the gradual reduction of the quantities of emissions of the certain pollutants at the level of the Republic of North Macedonia for the period 2012 to 2020 (Official gazette of RM no.107/2012)
- [46] National plan for energy and climate up to 2030, adopted by the Government in May 2022 https://www.economy.gov.mk/content/Official%20NECP_EN.pdf

APPENDIX 1: Key category analysis

In the process of key categories identification each pollutant was analyzed separately. The results of the level and trend assessment for each pollutant are presented in the following tables.

Table 215 Key source categories for emissions of NO_x in Gg

Level Assessr	ment 2022							
NFR Code	NFR sector		202	2	%		%cum	
1A1a	Public electricity and heat production		6.38		28.1%	28.1%		
1A3biii	R.T., Heavy duty vehicles				27.8%	55.9%		
1A2gviii	Other Stationary Combustion in Manufacturing Industries and Construction 2.78 12.2% 68.2%							
1A3bi	R.T., Passenger cars	1.84				76.3%	76.3%	
1A2gvii	Mobile Combustion in Manufacturing Industries and Construction	n in Manufacturing Industries and Construction			3.9% 80.		80.2%	
Trend Assess	ment 1990-2022					·		
NFR Code	NFR sector	1990	2022	TA	١	%	%cum	
1A1a	Public electricity and heat production	23.77	0.48	0.482		34.1%	34.1%	
1A3biii	R.T., Heavy duty vehicles	3.00	0.43	0.427		30.2%	64.3%	
1A2gviii	Other Stationary Combustion in Manufacturing Industries and Construction	2.00	0.16	0.158		11.2%	75.5%	
1A2gvii	Mobile Combustion in Manufacturing Industries and Construction	3.70	0.08	0.084		5.9%	81.5%	

Table 216 Key source categories for emissions of NMVOC in Gg

Level Assessment 2022						
NFR Code	NFR sector	2022	%	%cum		
1A4bi	Residential: stationary	4.74	18.2%	18.2%		
1B2av	Distribution of oil products	4.60	17.6%	35.8%		
2D3a	Domestic solvent use including fungicides	3.36	12.9%	48.6%		
2D3d	Coating applications	2.58	9.9%	58.5%		
2D3e	Degreasing	1.56	6.0%	64.5%		

3B1a	Dairy cattle			1.35	5.2%	69.6%			
3De	Cultivated crops			1.08	4.1%	73.8%			
1B1a	Coal Mining and Handling			1.02	3.9%	77.7%			
1A3bv	R.T., Gasoline evaporation			0.64	2.4%	80.1%			
Trend Assessment 1990-2022									
NFR Code	NFR sector	1990	2022	TA	%	%cum			
1A3bi	R.T., Passenger cars	11.83	0.42	0.421	35.0%	35.0%			
1B2av	Distribution of oil products	2.66	0.22	0.224	18.7%	53.7%			
2D3a	Domestic solvent use including fungicides	2.43	0.15	0.146	12.1%	65.8%			
2D3e	Degreasing	1.72	0.04	0.044	3.7%	69.5%			
2D3d	Coating applications	3.78	0.04	0.038	3.2%	72.7%			
1A3biv	R.T., Mopeds & Motorcycles	1.00	0.04	0.036	3.0%	75.7%			
3De	Cultivated crops	1.14	0.03	0.033	2.8%	78.5%			
3B1a	Dairy cattle	1.64	0.03	0.033	2.7%	81.2%			

Table 217 Key source categories for emissions of SO₂ in Gg

Level Assessment 2022									
NFR Code	NFR sector	NFR sector							
1A1a	Public electricity and heat production	87.73	96.9%	96.9%					
Trend Assessment 1990-2022									
NFR Code	NFR sector	1990	2022	TA	%	%cum			
1A1a	Public electricity and heat production	102.15	0.07	0.072	52.4%	52.4%			
1A2b	Non-ferrous Metals	2.10	0.02	0.023	16.9%	69.4%			
1A2a	Iron and Steel	1.40	0.01	0.012	8.7%	78.1%			
1A2gvii	Mobile Combustion in Manufacturing Industries and Construction	0.91	0.01	0.010	7.3%	85.4%			

Table 218 Key source categories for emissions of NH₃ in Gg

Level Assessm	ent 2022					
NFR Code	NFR sector			2022	%	%cum
3B1a	Dairy cattle			1.61	19.4%	19.4%
3Da2a	Animal manure			1.33	16.1%	35.5%
3Da3	Urine and dung deposited by grazing animals			1.22	14.6%	50.1%
1A4bi	Residential: stationary			1.06	12.8%	62.9%
3B3	Swine			0.86	10.4%	73.4%
3Da1	Inorganic N-fertilizers	0.76	9.2%	82.6%		
Trend Assessm	nent 1990-2022			'		
NFR Code	NFR sector	1990	2022	TA	%	%cum
1A4bi	Residential: stationary	0.13	0.21	0.212	22.0%	22.0%
3Da3	Urine and dung deposited by grazing animals	3.32	0.14	0.139	14.4%	36.4%
3B4gi	Laying Hens	1.76	0.12	0.119	12.3%	48.7%
3B1a	Dairy cattle	1.97	0.11	0.109	11.2%	59.9%
3Da2a	Animal manure	3.20	0.10	0.100	10.3%	70.3%
3B3	Swine	0.87	0.08	0.080	8.3%	78.6%
3B2	Sheep	0.92	0.25	0.055	5.7%	84.3%

Table 219 Key source categories for emissions of CO in Gg

Level Assessment 2022								
NFR Code	NFR sector				%	%cum		
1A4bi Residential: stationary 3					63.4%	63.4%		
1A3bi R.T., Passenger cars					7.4%	70.9%		
5A	Solid waste disposal on land					76.5%		
1A2a	Iron and Steel			2.25	4.5%	81.1%		
Trend Assessment	1990-2022							
NFR Code	NFR sector	1990	2021	TA	%	%cum		
1A3bi	R.T., Passenger cars	46.34	0.73	0.731	43.4%	43.4%		

Level Assessment 2022								
NFR Code	NFR Code NFR sector					%cum		
1A4bi	Residential: stationary	64.14	0.41	0.407	24.2%	67.6%		
5A	Solid waste disposal on land	1.22	0.13	0.127	7.6%	75.2%		
1A2a	Iron and Steel	1.50	0.09	0.090	5.4%	80.5%		

Table 220 Key source categories for emissions of TSP in Gg

Level Assessment 2022									
NFR Code	NFR sector			2022	%	%cum			
1A4bi	Residential: stationary	6.32	35.3%	35.3%					
1A1a	Public electricity and heat production	4.28	23.9%	59.1%					
3Dc	On-farm storage, handling and transport of agricultural products	1.96	10.9%	70.1%					
2A5a	Quarrying and mining of minerals other than coal	1.76	9.8%	79.9%					
2A5b	Construction and demolition	0.70	3.9%	83.8%					
Trend Assessmen	nt 1990-2022								
NFR Code	NFR sector	1990	2022	TA	%	%cum			
1A4bi	Residential: stationary	24.52	1.36	1.360	45.1%	45.1%			
1A1a	Public electricity and heat production	12.73	0.49	0.489	16.2%	61.4%			
3Dc	On-farm storage, handling and transport of agricultural products	0.265	8.8%	70.2%					
2A5b	Construction and demolition	0.257	8.5%	78.7%					
2A5a	Quarrying and mining of minerals other than coal	12.78	0.10	0.099	3.3%	82.0%			

Table 221 Key source categories for emissions of PM2.5 in Gg

Level Assessment 2022									
NFR Code	NFR sector	2022	%	%cum					
1A4bi	IA4bi Residential: stationary					69.6%			
1A1a	Public electricity and heat production	1.17	13.9%	83.5%					
Trend Assessment	Trend Assessment 1990-2022								
NFR Code	NFR sector	1990	2022	TA	%	%cum			

2C2	Ferroalloys Production	14.71	1.74	1.740	47.4%	47.4%
1A4bi	Residential: stationary	11.78	1.30	1.299	35.4%	82.8%

Table 222 Key source categories for emissions of PM10 in Gg

Level Assessme	ent 2022					
NFR Code	NFR sector			2022	%	%cum
1A4bi	Residential: stationary	esidential: stationary 6.01			44.4%	44.4%
1A1a	Public electricity and heat production	ublic electricity and heat production 2.89				65.7%
3Dc	On-farm storage. handling and transport of agricultural products	1.96	14.5%	80.2%		
Trend Assessm	nent 1990-2022				·	
NFR Code	NFR sector	1990	2022	TA	%	%cum
2C2	Ferroalloys Production	20.84	1.53	1.531	47.1%	47.1%
1A4bi	Residential: stationary	12.09	0.68	0.681	21.0%	68.1%
3Dc	On-farm storage, handling, and transport of agricultural products	2.06	0.36	0.362	11.1%	79.2%
1A1a	Public electricity and heat production	8.63	0.12	0.120	3.7%	82.9%

Table 223 Key source categories for emissions of BC in Gg

Level Assessment 2022									
NFR Code	NFR sector			2022	%	%cum			
1A4bi	Residential: stationary				60.2%	60.2%			
1A3biii	R.T., Heavy duty vehicles	0.06	6.7%	66.8%					
1A3bi	R.T., Passenger cars				6.3%	73.2%			
1A2gviii	Other Stationary Combustion in Manufacturing Industries and Construction				4.7%	77.9%			
1A2gvii	Mobile Combustion in Manufacturing Industries and Construction			0.03	3.3%	81.2%			
Trend Assessmen	t 1990-2022								
NFR Code	NFR sector	1990	2022	TA	%	%cum			
2C2	Ferroalloys Production	1.47	1.51	1.505	58.3%	58.3%			
1A4bi	Residential: stationary	1.18	0.67	0.666	25.8%	84.1%			

Table 224 Key source categories for emissions of Pb in Mg

Level Assessm	ent 2022					
NFR Code	NFR sector	NFR sector			%	%cum
1A1a	Public electricity and heat production			0.46	21.0%	21.0%
2C1	Iron and Steel Production			0.38	17.1%	38.1%
1A4bii	Residential: Household and gardening (mobile)				17.0%	55.1%
1A2a	Iron and Steel	0.30	13.6%	68.7%		
1A3bvi	R.T., Automobile tyre and break wear	0.29	13.3%	82.0%		
Trend Assessm	nent 1990-2022			'		
NFR Code	NFR sector	1990	2022	TA	%	%cum
2C5	Lead Production	131.06	0.01	58.49	31.8%	31.8%
1A3bi	R.T., Passenger cars	89.09	0.00	40.16	21.8%	53.6%
1A1a	Public electricity and heat production	0.89	0.36	21.58	11.7%	65.3%
1A4bii	Residential: Household and gardening (mobile)	0.63	0.42	17.533	9.5%	74.8%
2C1	Iron and Steel Production	4.07	0.48	16.141	8.8%	83.6%

Table 225 Key source categories for emissions of Cd in Mg

Level Assessment 2022								
NFR Code	NFR sector	2022	%	%cum				
1A4bi	Residential: stationary	0.10	45.5%	45.5%				
1A1a	Public electricity and heat production					72.4%		
2C1	Iron and Steel Production	0.03	13.5%	85.9%				
Trend Assessment 1990-2022								
NFR Code	NFR sector	1990	2022	TA	%	%cum		
1A4bi	Residential: stationary	0.21	2.33	2.330	34.0%	34.0%		
2C5	Lead Production	0.35	1.54	1.536	22.4%	56.4%		
1A1a	Public electricity and heat production	0.11	1.43	1.430	20.9%	77.3%		
2C1	Iron and Steel Production	0.02	0.88	0.881	12.9%	90.2%		

Table 226 Key source categories for emissions of Hg in Mg

Level Assessme	ent 2022					
NFR Code	NFR sector			2022	%	%cum
1A1a	Public electricity and heat production			0.09	45.5%	45.5%
1A2gviii	i Other Stationary Combustion in Manufacturing Industries and Construction			0.03	17.8%	63.3%
2C1	1 Iron and Steel Production			0.02	10.1%	73.4%
2K	Consumption of POPs and heavy metals			0.02	9.6%	83.0%
Trend Assessm	ent 1990-2022					
NFR Code	NFR sector	1990	2022	TA	%	%cum
1A1a	Public electricity and heat production	0.17	0.70	0.703	35.8%	35.8%
1A2gviii	Other Stationary Combustion in Manufacturing Industries and Construction	0.03	0.49	0.492	25.0%	60.8%
1A2a	Iron and Steel	0.01	0.27	0.273	13.9%	74.7%
2K	Consumption of POPs and heavy metals	0.02	0.23	0.234	11.9%	86.6%

Table 227 Key source categories for emissions of As in Mg

Level Assessment	Level Assessment 2022					
NFR Code	NFR sector			2022	%	%cum
1A1a	Public electricity and heat production			0.34	70.2%	70.2%
1A2gviii	Other Stationary Combustion in Manufacturing Industries and Construction			0.03	5.3%	75.4%
1A2a	Iron and Steel			0.02	3.2%	78.7%
5C2	Open burning of waste			0.01	1.1%	79.8%
2C5	Lead Production			0.00	0.6%	80.4%
Trend Assessment	1990-2022			·		
NFR Code	NFR sector	1990	2022	TA	%	%cum
1A1a	Public electricity and heat production 0.84 0.34				46.8%	46.8%
2C5	Lead Production	Lead Production 1.03 0.00				82.6%

Table 228 Key source categories for emissions of Cr in Mg

Level Assessment	2021			
NFR Code	NFR sector	2022	%	%cum

1A1a	Public electricity and heat production	Public electricity and heat production		0.22	31.5%	31.5%
1A4bi	Residential: stationary		0.19	27.2%	58.7%	
1A3bvi	A3bvi R.T., Automobile tyre and break wear			0.10	13.8%	72.4%
1A2a	A2a Iron and Steel			0.06	8.8%	81.2%
Trend Assessmen	t 1990-2022			,		
NFR Code	NFR sector	1990	2022	TA	%	%cum
2C1	Iron and Steel Production	3.98	0.03	5.489	55.2%	55.2%
1A1a	Public electricity and heat production 0.54 0.22				22.1%	77.3%
1A4bi	Residential: stationary	0.37	0.19	1.398	14.1%	91.3%

Table 229 Key source categories for emissions of Cu in Mg

Level Assessment	Level Assessment 2022						
NFR Code	NFR sector	NFR sector			%	%cum	
1A3bvi	A3bvi R.T., Automobile tyre and break wear			2.40	88.0%	88.0%	
Trend Assessment	1990-2022						
NFR Code	NFR sector	1990	2022	TA	%	%cum	
1A3bi	R.T., Passenger cars	0.30	0.11	0.108	27.5%	27.5%	
1A2gvii	Mobile Combustion in Manufacturing Industries and Construction	0.19	0.06	0.063	16.0%	43.4%	
2G	Other product manufacture and use	0.14	0.05	0.051	13.0%	56.5%	
1A3biii	R.T., Heavy duty vehicles	0.12	0.04	0.044	11.1%	67.6%	
1A4bi	Residential: stationary	0.10	0.03	0.028	7.2%	74.8%	
1A3bii	R.T., Light duty vehicles	0.06	0.02	0.022	5.7%	80.5%	
2C1	Iron and Steel Production	0.30	0.11	0.108	27.5%	27.5%	

Table 230 Key source categories for emissions of Ni in Mg

Level Assessment 2022						
NFR Code	NFR Code NFR sector			2022	%	%cum
1A1a	Public electricity and heat production			2.12	90.0%	90.0%
Trend Assessment	Trend Assessment 1990-2022					
NFR Code	NFR sector	1990	2022	TA	%	%cum

Level Assessment	Level Assessment 2022					
1A1a	Public electricity and heat production	1.21	0.64	0.637	83.4%	83.4%

Table 231 Key source categories for emissions of Se in Mg

Level Assessment 2022						
NFR Code	NFR sector			2022	%	%cum
1A1a	Public electricity and heat production			1.31	56.0%	56.0%
1A4bi	Residential: stationary			1.00	42.9%	98.9%
Trend Assessmer	nt 1990-2022					'
NFR Code	NFR sector	1990	2022	TA	%	%cum
1A4bi	Residential: stationary 0.03 0.49				50.4%	50.4%
1A1a	Public electricity and heat production	2.63	0.47	0.471	48.8%	99.2%

Table 232 Key source categories for emissions of Zn in Mg

Level Assessm	ent 2022					
NFR Code	NFR sector			2022	%	%cum
1A4bi	Residential: stationary			4.05	50.7%	50.7%
1A1a	Public electricity and heat production			0.89	11.1%	61.8%
1A3bvi	R.T., Automobile tyre and break wear			0.84	10.6%	72.4%
1A2a	Iron and Steel				7.3%	79.8%
2C1	Iron and Steel Production				7.3%	87.1%
Trend Assessm	nent 1990-2022					
NFR Code	NFR sector	1990	2022	TA	%	%cum
1A4bi	Residential: stationary	8.14	0.37	0.365	27.9%	27.9%
2C1	Iron and Steel Production	3.54	0.24	0.244	18.7%	46.6%
1A1a	Public electricity and heat production	0.73	0.21	0.212	16.2%	62.8%
1A2a	Iron and Steel	0.37	0.15	0.154	11.8%	74.5%
1A2gviii	Other Stationary Combustion in Manufacturing Industries and Construction	0.34	0.11	0.112	8.6%	83.1%

Table 233 Key source categories for emissions of DIOX in g I-TEQ

Level Assessment 2022						
NFR Code	NFR sector			2022	%	%cum
1A4bi	1A4bi Residential: stationary			6.33	74.4%	74.4%
2C1	Iron and Steel Production			0.76	8.9%	83.4%
Trend Assessment 1990-2022						
NFR Code	NFR sector	1990	2022	TA	%	%cum
1A4bi	Residential: stationary	12.80	0.23	0.229	41.0%	41.0%
2C1	Iron and Steel Production	2.66	0.10	0.104	18.6%	59.5%
1A2a	Iron and Steel	0.29	0.10	0.096	17.1%	76.7%
1A2b	Non-ferrous Metals	0.47	0.00	0.055	9.8%	86.5%

Table 234 Key source categories for emissions of PAHs in Mg

Level Assessment	Level Assessment 2022						
NFR Code	NFR sector			2022	%	%cum	
1A4bi	Residential: stationary			2.73	75.6%	75.6%	
1A2a	Iron and Steel			0.34	9.4%	85.1%	
Trend Assessment	Trend Assessment 1990-2021						
NFR Code	NFR sector	1990	2022	TA	%	%cum	
1A4bi	Residential: stationary	5.61	2.83	0.252	31.2%	31.2%	
1A2a	Iron and Steel	0.27	0.60	0.225	27.8%	59.1%	
1A2gviii	Other Stationary Combustion in Manufacturing Industries and Construction	0.12	0.30	0.149	18.5%	77.6%	
1A2b	Non-ferrous Metals	0.35	0.00	0.082	10.1%	87.7%	

Table 235 Key source categories for emissions of HCB in kg

Level Assessment 2021						
NFR Code	NFR sector	2022	%	%cum		
5C1biii	Clinical waste	0.11	69.9%	69.9%		
1A4bi	Residential: stationary	0.04	26.2%	96.0%		

Level Assessment 2021						
Trend Assessment 1990-2022						
NFR Code	NFR sector	1990	2022	TA	%	%cum
1A4bi	Residential: stationary	0.08	76.27	76.265	87.2%	87.2%

Table 236 Key source categories for emissions of PCB in kg

Level Assessment 2022							
NFR Code	NFR sector 2022 % %cum						
2K	Consumption of POPs and heavy metals 207.71 87.0% 85,7%						
Trend Assessme	Trend Assessment 1990-2022						
NFR Code	NFR sector 1990 2022 TA % %cum						
2K	Consumption of POPs and heavy metals	202.80	207.71	0.53	62.3%	62.3%	
2C5	Lead Production	124.26	28.50	0.31	36.9%	99.2%	

APPENDIX 2: Summary source sectors use PM emission factors that include/exclude the condensable component (see below)

NFR	Source / sector name	PM emiss condensal componer	ble	EF reference and comments
	included excluded		excluded	

1A1a	Public electricity and heat production	no	yes	The emission factors used for TSP, PM10 and PM2.5, that are calculating from direct emission for large point sources (LPS) and yearly taken from the EPR database, exclude the condensable component. Method used for PM10 emission measurement is gravimetric method and samples for it, need to be dry. Gravimetric method is in North Macedonian law, reference method for determination of mass concentration of floating particles, described with HRN EN 12341 standard for PM10 fraction. For non LCP sources, the emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and these PM factors represent filterable PM emissions and are based on an defined ash content.
1A1b	Petroleum refining	no	yes	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and these PM factors represent filterable PM emissions only (excluding any condensable fraction)
1A1c	Manufacture of solid fuels and other energy industries	unclear	unclear	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and the basis of these emission factors could not be determined in the reference.
1A2a	Stationary combustion in manufacturing industries and construction: Iron and steel	unclear	unclear	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and these emission factors have been reviewed and it is unclear whether they represent filterable PM or total PM (filterable and condensable) emissions.
1A2b	Stationary combustion in manufacturing industries and construction: Non- ferrous metals	unclear	unclear	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and these emission factors have been reviewed and it is unclear whether they represent filterable PM or total PM (filterable and condensable) emissions.
1A2c	Stationary combustion in manufacturing industries and	unclear	unclear	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and these emission factors have been reviewed and it is unclear whether they represent filterable PM or total PM (filterable and condensable) emissions.

	construction: Chemicals			
1A2d	Stationary combustion in manufacturing industries and construction: Pulp, Paper and Print	unclear	unclear	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and these emission factors have been reviewed and it is unclear whether they represent filterable PM or total PM (filterable and condensable) emissions.
1A2e	Stationary combustion in manufacturing industries and construction: Food processing, beverages and tobacco	unclear	unclear	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and these emission factors have been reviewed and it is unclear whether they represent filterable PM or total PM (filterable and condensable) emissions.
1A2f	Stationary combustion in manufacturing industries and construction: Non- metallic minerals	unclear	unclear	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and these emission factors have been reviewed and it is unclear whether they represent filterable PM or total PM (filterable and condensable) emissions.
1A2gvii	Mobile Combustion in manufacturing industries and construction: (please specify in the IIR)	yes	no	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and these emission factors represent total PM emissions (filterable and condensable fractions).
1A2gvii i	Stationary combustion in manufacturing industries and construction: Other (please specify in the IIR)	unclear	unclear	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and these emission factors have been reviewed and it is unclear whether they represent filterable PM or total PM (filterable and condensable) emissions.
1A3ai(i)	International aviation LTO (civil)	unclear	unclear	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2013 and there is no information on inclusion or exclusion of the condensable component in PM emission factors.

1A3aii(i)	Domestic aviation LTO (civil)	unclear	unclear	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2013 and there is no information on inclusion or exclusion of the condensable component in PM emission factors.
1A3bi	Road transport: Passenger cars	yes	no	The emission factors used for TSP, PM10 and PM2.5 are default ones from COPERT IV that is Tier 3 approach accordin to GB2019. According
1A3bii	Road transport: Light duty vehicles	yes	no	to GB2019, PM mass emission factors are considered to include both filterable and
1A3biii	Road transport: Heavy duty vehicles and buses	yes	no	condensable material. The mass of particles collected on a filter kept below 52°C during diluted exhaust sampling. This corresponds to
1A3biv	Road transport: Mopeds & motorcycles	yes	no	total (filterable and condensable) PM2.5. Coarse exhaust PM (i.e. >2.5µm diameter) is considered to be negligible, hence PM=PM2.5.
1A3bv	Road transport: Gasoline evaporation	NA	NA	This activity does not result with TSP, PM10 and PM2.5 emissions.
1A3bvi	Road transport: Automobile tyre and brake wear	unclear	unclear	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and there is no information on inclusion or exclusion of the condensable component in PM emission factors.
1A3bvi i	Road transport: Automobile road abrasion	unclear	unclear	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and there is no information on inclusion or exclusion of the condensable component in PM emission factors.
1A3c	Railways	unclear	unclear	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and there is no information on inclusion or exclusion of the condensable component in PM emission factors.
1A3di(i i)	International inland waterways	unclear	unclear	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and there is no information on inclusion or exclusion of the condensable component in PM emission factors.

1A3dii	National navigation (shipping)	unclear	unclear	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and there is no information on inclusion or exclusion of the condensable component in PM emission factors.
1A3ei	Pipeline transport	NA	NA	This activity does not result with TSP, PM10 and PM2.5 emissions.
1A3eii	Other (please specify in the IIR)	NA	NA	This activity does not result with TSP, PM10 and PM2.5 emissions.
1A4ai	Commercial/instituti onal: Stationary	unclear	unclear	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and these emission factors have been reviewed and it is unclear whether they represent filterable PM or total PM (filterable and condensable) emissions.
1A4aii	Commercial/instituti onal: Mobile	IE	IE	IE: 1A4aii
1A4bi	Residential: Stationary	unclear	unclear	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and these emission factors have been reviewed and it is unclear whether they represent filterable PM or total PM (filterable and condensable) emissions.
1A4bii	Residential: Household and gardening (mobile)	yes	no	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and these emission factors represent total PM emissions (filterable and condensable fractions).
1A4ci	Agriculture/Forestry/ Fishing: Stationary	unclear	unclear	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and these emission factors have been reviewed and it is unclear whether they represent filterable PM or total PM (filterable and condensable) emissions.
1A4cii	Agriculture/Forestry/ Fishing: Off-road vehicles and other machinery	yes	no	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and these emission factors represent total PM emissions (filterable and condensable fractions).
1A4ciii	Agriculture/Forestry/ Fishing: National fishing	IE	IE	IE: 1A3dii
1A5a	Other stationary (including military)	IE	IE	IE: 1A4a
1A5b	Other, Mobile (including military,	IE	IE	IE: 1A4a, 1A3b(i-iv)

	land based and recreational boats)			
1B1a	Fugitive emission from solid fuels: Coal mining and handling	unclear	unclear	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and there is no information on inclusion or exclusion of the condensable component in PM emission factors.
1B1b	Fugitive emission from solid fuels: Solid fuel transformation	unclear	unclear	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and there is no information on inclusion or exclusion of the condensable component in PM emission factors.
1B1c	Other fugitive emissions from solid fuels	NO	NO	This activity does not exist in North Macedonia.
1B2ai	Fugitive emissions oil: Exploration, production, transport	unclear	unclear	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and there is no information on inclusion or exclusion of the condensable component in PM emission factors.
1B2aiv	Fugitive emissions oil: Refining / storage	unclear	unclear	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and there is no information on inclusion or exclusion of the condensable component in PM emission factors.
1B2av	Distribution of oil products	NA	NA	This activity does not result with TSP, PM10 and PM2.5 emissions.
1B2b	Fugitive emissions from natural gas (exploration, production, processing, transmission, storage, distribution and other)	NA	NA	This activity does not result with TSP, PM10 and PM2.5 emissions.
1B2c	Venting and flaring (oil, gas, combined oil and gas)	unclear	unclear	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and there is no information on inclusion or exclusion of the condensable component in PM emission factors.

1B2d	Other fugitive emissions from energy production	NO	NO	This activity does not exist in North Macedonia.
2A1	Cement production	unclear	unclear	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and there is no information on inclusion or exclusion of the condensable component in PM emission factors.
2A2	Lime production	unclear	unclear	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and there is no information on inclusion or exclusion of the condensable component in PM emission factors.
2A3	Glass production	NO	NO	This activity does not exist in North Macedonia.
2A5a	Quarrying and mining of minerals other than coal	unclear	unclear	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and there is no information on inclusion or exclusion of the condensable component in PM emission factors.
2A5b	Construction and demolition	unclear	unclear	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and there is no information on inclusion or exclusion of the condensable component in PM emission factors.
2A5c	Storage, handling and transport of mineral products	IE	IE	IE: 2A1, 2A2, 2A3, 2A5a, 2A5b
2A6	Other mineral products (please specify in the IIR)	NO	NO	This activity does not exist in North Macedonia.
2B1	Ammonia production	NO	NO	This activity does not exist in North Macedonia.
2B2	Nitric acid production	NO	NO	This activity does not exist in North Macedonia.
2B3	Adipic acid production	NO	NO	This activity does not exist in North Macedonia.
2B5	Carbide production	NO	NO	This activity does not exist in North Macedonia.
2B6	Titanium dioxide production	NO	NO	This activity does not exist in North Macedonia.

2B7	Soda ash production	NO	NO	This activity does not exist in North Macedonia.
2B10a	Chemical industry:	NE	NE NE	There is no emission factor for TSP, PM10 and
2D10a	Other (please	IVL	NL	PM2.5 in the GB2019.
	specify in the IIR)			
2B10b	Storage, handling and transport of chemical products (please specify in the IIR)	IE	IE	IE: 2B10a
2C1	Iron and steel production	no	yes	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and these
	production			PM factors represent filterable PM emissions
				only (excluding any condensable fraction
				(European Commission, 2001)).
2C2	Ferroalloys	no	yes	The emission factors used for TSP, PM10 and
	production			PM2.5 are default ones from GB2019 and these PM factors represent filterable PM emissions
				only (excluding any condensable fraction).
2C3	Aluminium	no	yes	The emission factors used for TSP, PM10 and
	production			PM2.5 are default ones from GB2019 and these
				PM factors represent filterable PM emissions
2C4	Magnesium	NO	NO	only (excluding any condensable fraction).
2C4	Magnesium production	NO	NO	This activity does not exist in North Macedonia.
2C5	Lead production	NO	NO	This activity does not exist in North Macedonia.
2C6	Zinc production	NO	NO	This activity does not exist in North Macedonia.
2C7a	Copper production	NO	NO	This activity does not exist in North Macedonia.
2C7b	Nickel production	NO	NO	This activity does not exist in North Macedonia.
2C7c	Other metal	NO	NO	This activity does not exist in North Macedonia.
	production (please specify in the IIR)			
2C7d	Storage, handling	NO	NO	This activity does not exist in North Macedonia.
	and transport of			
	metal products (please specify in the			
	IIR)			
2D3a	Domestic solvent use	NA	NA	This activity does not result with TSP, PM10
	including fungicides			and PM2.5 emissions.

2D3b	Road paving with asphalt	yes	no	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and these PM factors represent filterable PM emissions with Nnote that US EPA (2004) includes condensable PM emission factors and factors for controlled plant.
2D3c	Asphalt roofing	unclear	unclear	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and there is no information on inclusion or exclusion of the condensable component in PM emission factors.
2D3d	Coating applications	NA	NA	This activity does not result with TSP, PM10 and PM2.5 emissions.
2D3e	Degreasing	NE	NE	There is no emission factor for PM2.5 in the GB2019.
2D3f	Dry cleaning	NE	NE	There is no emission factor for PM2.5 in the GB2019.
2D3g	Chemical products	NA	NA	This activity does not result with TSP, PM10 and PM2.5 emissions.
2D3h	Printing	NE	NE	There is no emission factor for PM2.5 in the GB2019.
2D3i	Other solvent use (please specify in the IIR)	unclear	unclear	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and there is no information on inclusion or exclusion of the condensable component in PM emission factors.
2G	Other product use (please specify in the IIR)	unclear	unclear	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and there is no information on inclusion or exclusion of the condensable component in PM emission factors.
2H1	Pulp and paper industry	NO	NO	This activity does not exist in North Macedonia.
2H2	Food and beverages industry	NE	NE	There is no emission factor for TSP, PM10 and PM2.5 in the GB2019.
2Н3	Other industrial processes (please specify in the IIR)	NO	NO	This activity does not exist in North Macedonia.
2I	Wood processing			There is no emission factor for PM10 and PM2.5 in the GB2019.

2 J	Production of POPs	NO	NO	This activity does not exist in North Macedonia.
2K	Consumption of POPs and heavy metals (e.g. electrical and scientific equipment)	NA	NA	This activity does not result with TSP, PM10 and PM2.5 emissions.
2L	Other production, consumption, storage, transportation or handling of bulk products (please specify in the IIR)	NO	NO	This activity does not exist in North Macedonia.
3B1a	Manure management - Dairy cattle	unclear	unclear	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and there is no information on inclusion or exclusion of the condensable component in PM emission factors.
3B1b	Manure management - Non-dairy cattle	unclear	unclear	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and there is no information on inclusion or exclusion of the condensable component in PM emission factors.
3B2	Manure management - Sheep	unclear	unclear	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and there is no information on inclusion or exclusion of the condensable component in PM emission factors.
3B3	Manure management - Swine	unclear	unclear	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and there is no information on inclusion or exclusion of the condensable component in PM emission factors.
3B4a	Manure management - Buffalo	NO	NO	This activity does not exist in North Macedonia.
3B4d	Manure management - Goats	unclear	unclear	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and there is no information on inclusion or exclusion of the condensable component in PM emission factors.

3B4e	Manure management - Horses	unclear	unclear	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and there is no information on inclusion or exclusion of the condensable component in PM emission factors.
3B4f	Manure management - Mules and asses	unclear	unclear	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and there is no information on inclusion or exclusion of the condensable component in PM emission factors.
3B4gi	Manure mangement - Laying hens	unclear	unclear	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and there is no information on inclusion or exclusion of the condensable component in PM emission factors.
3B4gii	Manure mangement - Broilers	unclear	unclear	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and there is no information on inclusion or exclusion of the condensable component in PM emission factors.
3B4giii	Manure mangement - Turkeys	unclear	unclear	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and there is no information on inclusion or exclusion of the condensable component in PM emission factors.
3B4giv	Manure management - Other poultry	unclear	unclear	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and there is no information on inclusion or exclusion of the condensable component in PM emission factors.
3B4h	Manure management - Other animals (please specify in IIR)	NO	NO	This activity does not exist in North Macedonia.
3Da1	Inorganic N- fertilizers (includes also urea application)	NA	NA	This activity does not result with TSP, PM10 and PM2.5 emissions.
3Da2a	Animal manure applied to soils	NA	NA	This activity does not result with TSP, PM10 and PM2.5 emissions.
3Da2b	Sewage sludge applied to soils	NA	NA	This activity does not result with TSP, PM10 and PM2.5 emissions.

3Da2c	Other organic fertilisers applied to soils (including compost)	NA	NA	This activity does not result with TSP, PM10 and PM2.5 emissions.
3Da3	Urine and dung deposited by grazing animals	NA	NA	This activity does not result with TSP, PM10 and PM2.5 emissions.
3Da4	Crop residues applied to soils	NA	NA	This activity does not result with TSP, PM10 and PM2.5 emissions.
3Db	Indirect emissions from managed soils	NA	NA	This activity does not result with TSP, PM10 and PM2.5 emissions.
3Dc	Farm-level agricultural operations including storage, handling and transport of agricultural products	yes	no	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and there is no information that the processes which result in particulate emissions are largely low-temperature mechanical activities, and emissions are unlikely to include substantial quantities of condensable particulate material.
3Dd	Off-farm storage, handling and transport of bulk agricultural products	NE	NE	There is no emission factor for PM10 and PM2.5 in the GB2019.
3De	Cultivated crops	NA	NA	This activity does not result with TSP, PM10 and PM2.5 emissions.
3Df	Use of pesticides	NA	NA	This activity does not result with TSP, PM10 and PM2.5 emissions.
3F	Field burning of agricultural residues	unclear	unclear	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and there is no information on inclusion or exclusion of the condensable component in PM emission factors.
3I	Agriculture other (please specify in the IIR)	NO	NO	This activity does not exist in North Macedonia.
5A	Biological treatment of waste - solid waste disposal on land	unclear	unclear	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and there is no information on inclusion or exclusion of the condensable component in PM emission factors.

5B1	Biological treatment of waste - composting	NE	NE	There is no emission factor for PM10 and PM2.5 in the GB2019.
5B2	Biological treatment of waste - anaerobic digestion at biogas facilities	NA	NA	This activity does not result with TSP, PM10 and PM2.5 emissions.
5C1a	Municipal waste incineration	NO	NO	This activity does not exist in North Macedonia.
5C1bi	Industrial waste incineration	unclear	unclear	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and there is no information on inclusion or exclusion of the condensable component in PM emission factors.
5C1bii	Hazardous waste incineration	NO	NO	This activity does not exist in North Macedonia.
5C1biii	Clinical waste incineration	unclear	unclear	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and there is no information on inclusion or exclusion of the condensable component in PM emission factors.
5C1biv	Sewage sludge incineration	NO	NO	This activity does not exist in North Macedonia.
5C1bv	Cremation	NO	NO	This activity does not exist in North Macedonia.
5C1bvi	Other waste incineration (please specify in the IIR)	NO	NO	This activity does not exist in North Macedonia.
5C2	Open burning of waste	unclear	unclear	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and there is no information on inclusion or exclusion of the condensable component in PM emission factors.
5D1	Domestic wastewater handling	NE	NE	There is no emission factor for PM10 and PM2.5 in the GB2019.
5D2	Industrial wastewater handling	NE	NE	There is no emission factor for PM10 and PM2.5 in the GB2019.
5D3	Other wastewater handling (please specify in IIR)	NE	NE	There is no emission factor for PM10 and PM2.5 in the GB2019.

5E	Other waste (please specify in IIR)	unclear	unclear	The emission factors used for TSP, PM10 and PM2.5 are default ones from GB2019 and there is no information on inclusion or exclusion of the condensable component in PM emission factors.
6A	Other (included in national total for entire territory) (please specify in IIR)	NO	NO	This activity does not exist in North Macedonia.

APPENDIX 3 Further elaboration of completeness

No further info on this subject

APPENDIX 4 National energy balance 2022

Part 1

F															
Energy balances, in natural unit		ars													
	2022														
	Hard coal ['000 tonnes]	Coke ['000 tonnes]	Sub- bituminous coal ['000]	Lignite	Total petroleum products ['000 tonnes]	Refinery gas ['000 tonnes]	LPG ['000 tonnes]	Motor spirit ['000 tonnes]	Kerosenes, jet fuels ['000 tonnes]	Road diesel ['000]	Heating and other gasoil ['000]	Residual fuel oil ['000 tonnes]	Petroleum coke ['000]	Other petroleum products ['000 tonnes]	Natural gas ['000 mn3]
Total primary production	-	-	-	5079,495	-	-	-	-	-	-	-	-	-	-	-
Recovered products	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Imports	0,951	0,400	64,559	673,524	1349,051	-	67,689	103,116	51,423	717,461	28,389	210,576	122,875	47,521	287792,404
Stock change	-0,007	0,130	-11,472	18,143	-22,717	-	0,288	-2,511	-0,320	-11,537	0,096	-19,959	11,241	-0,015	10,598
Exports	-	0,004	-	52,953	133,773	-	1,793	6,927	25,175	71,435	-	2,800	17,149	8,493	-
Gross inland consumption	0,944	0,526	53,087	5718,209	1192,562	-	66,184	93,678	25,928	634,489	28,485	187,817	116,968	39,013	287803,002
Transformation input	-	-	-	5699,282	151,688	-	-	-	-	-	-	151,688	-	-	234531,995
Public thermal power stations	-	-	-	5699,282	151,688	-	-	-	-	-	-	151,688		-	-
Autoprod. thermal power stations	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CHP plants	-	-	-	-	-	-	-	-	-	-	-	-	-	-	215309,188
Briquetting plants	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Biogas plants		-	-	-			-		-	-	-	-	-	-	-
Refineries		-	-	_			-		-	_	_	_	-	_	-
Main activity producer heat plants		_	_	_			_	_	-	-	-	_	-	_	19222.807
Transformation output	-	_	-	-	-	_	-	_	-	_	_	_	_	_	-
Public thermal power stations	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Autoprod. thermal power stations	_	_		_	_	_	_	_	_	_	_	_	_	_	_
CHP plants		_		_				_		_		_		_	_
Briquetting plants	_	_	_	_	_	_		_	_	_	_	_	_	_	_
Biogas plants	_	_	_	_	_	_	_	_	_	_		_		_	
Refineries	-	-		_	-	-		-	-	-		-			
Main activity producer heat plants	-	-		-		-		-	-	-	-	-	-	-	-
Exchanges and transfers, returns		_		-	0,235	-	-	-	-	0,235	-	-	-	-	
Consumption of the energy branch	-	-	-	-	1,327	-	-	-	-	1,179	0,026	0,123	-	-	
Distribution losses	-	-	-	=	1,527	-	-	-	-	1,1/5	0,020	0,123	-	=	1285,134
	- 0.044	0.536	F2 007	10.036	1020 701	-	66 104	- 02.670	25.020	622 546	20.450	26.006	116.060	20.012	
Available for final consumption	0,944	0,526	53,087	18,926		-	66,184	93,678	25,928	633,546	28,459	36,006	116,968	39,013	51985,873
Final non-energy consumption	-	- 0.500	-	-	39,013	-	-		-	-		-	-	39,013	-
Final energy consumption	0,944	0,526		18,926	1000,769	-	66,184	93,678	25,928	633,546	28,459	36,006	116,968	-	51985,873
Industry	0,944	0,526		15,289	202,091	-	15,541	-	-	27,350	12,411	31,525	115,264	-	44015,167
Iron and steel industry	0,848	0,526	53,087	10,845	42,181		0,267	-	-	1,623	0,030		29,088	-	29420,193
Non-ferrous metal industry	-	-	-	-	1,299	-	1,261	-	-	0,014	0,024		-	-	
Chemical industry	-	-	-	=	0,522	-	0,013	-	-	0,057	0,399			-	2388,970
Glass, pottery and building mat. indust	0,096	-	-	- 0.5	108,574		8,584	-	-	2,265	1,736		86,177	-	1248,767
Ore-extraction industry	-	-	-	0,920	13,150	-	0,055	-	-	12,896	0,198		-	-	
Food, drink and tobacco industry	-	-	-		16,603	-	3,711	-	-	0,352	5,207	7,333		-	5224,088
Textile, leather and clothing industry	-	-	-	3,104	2,988	-	0,066	-	-		1,513	1,409		-	167,314
Paper and printing	-	-	-	-	0,512	-	0,039	-	-	0,063	0,104		-	-	587,318
Engineering and other metal industry	-	-	-	0,420	2,741	-	1,246	-	-	0,415	1,059	0,021	-	-	3985,410
Other industries	-	-	-	-	13,522	-	0,299	-	-	9,665	2,142	1,417	-	-	993,106
Transport	-	-	-	-	741,713	-	42,101	93,262	25,913	580,437	-	-	-	-	2242,206
Railways	-	-	-	-	1,104	-	-	-	-	1,104	-	-	-	-	-
Road transport	-	-	-	-	714,613	-	42,101	93,179		579,333	-	-	-	-	2242,206
Air transport	-	-	-	-	25,996	-	-	0,083	25,913		-	-	-	-	-
Households, commerce, pub. auth., etc	-	-	-	3,637	56,965	-	8,542	0,416	0,015	25,759	16,048	4,482	1,703	-	5728,500
Households	-	-	-	0,819	7,134	-	3,308	-	-	-	3,826		-	-	170,359
Agriculture	-	-	-	0,977	11,845	-	0,051	0,416	0,015	6,684	0,588	2,388	1,703	-	-
Other	-	-	-	1,841	37,986	-	5,183	-	-	19,075	11,634	2,094	-	-	5558,141
Statistical difference	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Part 2

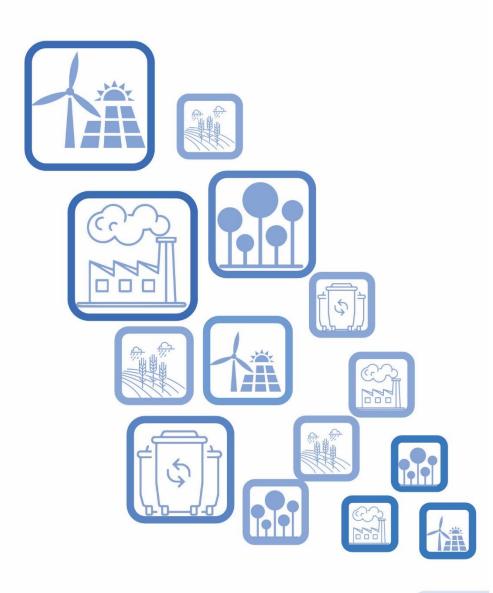
Energy balances, in natural uni	ts hy vears											
2022												
2022	Geothermal	Fuelwood ['000 m3]	Wood of fruit trees and oth. plant residues ['000M3]	Wood wastes, wood briquettes and pellets ['000 tonnes]		Solar electricity [GWh]	Solar thermal [TJ]	Wind electricity [GWh]	Biogas [GJ]	Biodiesel ['000 tonnes]	Derived heat [TJ]	Electrical energy [GWh]
Total primary production	1392,706	989,841	23,742	25,811	1345,316	91,888	121,373	107,656	739,868	-	-	-
Recovered products	-	-	-	-	-	-	-	-	-	-	-	
Imports	-	4,442	-	78,746	-	-	-	-	-	-	-	1935,726
Stock change	-	-18,758	-	7,255	-	-	-	-	-	0,235	-	
Exports	-	0,032	-	0,247	-	-	-	-	-	-	-	523,201
Gross inland consumption	1392,706	975,493	23,742	111,565	1345,316	91,888	121,373	107,656	739,868	0,235	-	1412,525
Transformation input	-	-	-	-	-	-	-	_	739,868	-	-	•
Public thermal power stations	-	-	-	-	-	-	-	-	-	-	-	-
Autoprod. thermal power stations	-	-	-	-	-	-	-	-	-	-	-	-
CHP plants	-	-	-	-	-	-	-	-	-	-	-	-
Briquetting plants	-	-	-	-	-	-	-	-	-	-	-	-
Biogas plants	-	-	-	-	-	-	-	-	739,868	-	-	-
Refineries	-	-	-	-	-	-	-	-	-	-	-	-
Main activity producer heat plants	-	-	-	-	-	-	-	-	-	-	-	-
Transformation output	-	-	-	-	-	-	-	-	-	-	2068,428	4388,598
Public thermal power stations	-	-	-	-	-	-	-	-	-	-	-	3345,783
Autoprod. thermal power stations	-	-	-	-	-	-	-	-	-	-	-	-
CHP plants	-	-	-	-	-	-	-	-	-	-	1412,125	991,436
Briquetting plants	-	-	-	-	-	-	-	-	-	-	-	-
Biogas plants	-	-	-	-	-	-	-	-	-	-	-	51,380
Refineries	-	-	-	-	-	-	-	-	-	-	-	-
Main activity producer heat plants	-	-	-	-	-	-	-	-	-	-	656,303	-
Exchanges and transfers, returns	-	-		-	-1345,316	-76,837	-	-107,656	-	-0,235		1529,809
Consumption of the energy branch	-	0,037	-	-	-	-	-	-	-	-	1,485	483,563
Distribution losses	97,806		-	-	-	-	-	-	-	-	217,456	972,126
Available for final consumption	1294,900	975,456	23,742	111,565	-	15,051	121,373	-	-	-	1849,487	5875,242
Final non-energy consumption	-	-	-	-	-	-	-	-	-	-	-	-
Final energy consumption	1294,900	_	23,742		-	15,051	121,373	-	-	-	1849,487	5875,242
Industry	-	10,922	-	26,055	-	15,051	-	-	-	-	28,207	1397,339
Iron and steel industry	-	0,014	-	15,169	-	4,114	-	-	-	-	28,207	495,677
Non-ferrous metal industryChemical industry	-	-	-	0,007 0,046	-	1,013 0,511	-	-	-	-	-	13,508 86,766
Class, pottery and building mat. indus		0,087		0,046		0,511						135,820
Ore-extraction industry		0,087		0,104		0,679						119,911
Food, drink and tobacco industry		6,495		6,313		3,404						175,122
Textile, leather and clothing industry		1,746		0,513	_	0,839	_		_	_	_	54,042
Paper and printing		0,273		0,392	_	0,686	_	_	_	_	_	12,393
Engineering and other metal industry	_	0,273	_	0,189	_	2,554	_	_	_	_	_	202,728
Other industries		1,611	-	3,358		0,317	-			-	-	101,373
Transport	_	- 1,011	_	-	_	-	_	_	_	_	_	12,078
Railways	-	-		-		-	-			-	-	12,078
Road transport	-	-	-	-	-	-	-	_	-	-	-	-
Air transport	-	-	-	-	-	-	-		-	-	-	-
Households, commerce, pub. auth., etc	1294,900	964,534	23,742	85,510	-	-	121,373	_	-	-	1821,280	4465,825
Households		936,656		78,621	-	-	121,373		-	-	1404,423	3080,244
Agriculture	745,579			-	-	-	-	-	-	-	-	40,598
Other	549,321	19,126		6,889	-	-	-	-	-	-	416,857	1344,983
Statistical difference	-	-	-	-	-	-	-	-	-	-	-	-

¹⁾ Претходни податоци/Preliminary data

APPENDIX 5 Useful information- Nomenclature for reporting format (NFR)- Format for reporting under the UNECE/LRTAP convention for 2022

						ollutants			Particula			Other	Prid	ority Heavy Mc	tals			Additional H	leavy Metals						POPs (from 19	s 90)						Activi			
MK: 04.03.2024; 2022		NFR sectors to be reported			(from	1990)			(from	2000)		(from 1990)		(from 1990)				(from 1990, vol	untary reporting	9)					PAHs							(from	1990)		
				NOx (as NO ₂)	NMVOC	SOx (as SO ₂)	NH ₃	PM _{2.5}	PM ₁₀	TSP	BC	со	Pb	Cd	Hg	As	Cr	Cu	Ni	Se	Zn	PCDD/ PCDF (dioxins/ furens)	benzo(a) pyrene	benzo(b) fluoranthene	benzo(k) fluoranthene	Indeno (1,2,3- cd) pyrene	Total 1-4	нсв	PCBs	Liquid Fuels	Solid Fuels	Gaseous Fuels	Biom Oth	Other ner activit els (specif d)	r by Other Activity Units
Aggregation for Gridding and LPS	NFR Code	Long name	Notes	kt	kt	kt	kt	kt	kt	kt	kt	kt	t	t	t	t	t	t	t	t	t	g I-TEQ	t	t	t	t	t	kg	kg	TJ NCV	TJ NCV	TJ NCV	TJ T.	J.v	
A_PublicPower	1A1a	Public electricity and heat production		6,37733	0,077000593	87,73453378	NA	1,171131624	2,891231197	4,28195	0,029150848	1,8498758	0,464960296	0,08049921	0,086737901	0,441429878	0,280450938	0,067150841	2,121272738	1,310696682	0,887613302	0,306384561	4,50247E-05	0,001104369	0,000874017	0,000116939	0,00214035	0,00019292	1E-04	7223,4	28794	7721,220509	NA N	A NA	TJ NCV
B_Industry	1A1b	Petroleum refining		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO NO	O NO	TJ NCV
B_Industry	1A1c	Manufacture of solid fuels and other energy industries		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO NO	0 NO	TJ NCV
B_industry	1A2a	Stationary combustion in manufacturing industries and construction: Iron and steel		0,714204366	0,306884242	2,003636895	0,000309559	0,283545407	0,304103255	0,321296534	0,03051829	2,25276873	0,301573994	0,007314013	0,018099494	0,008954575	0,035714509	0,040120929	0,029109296	0,004193973	0,585858683	0,47319607	0,10347817	0,140544282	0,054175072	0,042393839	0,340591363	0,002852724	0,3737	462,59987	2198,216671	988,1654446	258 N	A NA	TJ NCV
B_Industry	1A2b	Stationary combustion in manufacturing industries and construction: Non-ferrous metals		0,030295887	0,00151158	0,002775963	NA NA	0,001197364	0,001197721	0,001198554	0,000665859	0,003964153	7,93582E-06	1,90121E-06	7,15086E-06	1,79367E-06	1,4544E-05	1,37017E-05	8,46282E-07	6,58737E-06	0,001807765	9,45493E-05	0,000113357	0,000887432	0,000101295	8,90288E-05	0,001191113	NA.	NA NA	59,0352	NA	NA	0,12 N/	A NA	TJ NCV
B_Industry	1A2c	Stationary combustion in manufacturing industries and construction: Chemicals		0,016104496	0,002573779	0,000987309	NA	0,000566421	0,000568784	0,000574297	0,000253776	0,004074692	2,37224E-05	1,04292E-05	4,61325E-05	8,76407E-06	2,30938E-05	9,26353E-06	2,77578E-06	7,21239E-06	0,001032505	0,000148036	4,53228E-05	0,00030801	3,74796E-05	3,27547E-05	0,000395001	3,93805E-06	5E-08	19,6783815	NA	80,24073289	0,79 N	A NA	TJ NCV
B_Industry	1A2d	Stationary combustion in manufacturing industries and construction: Pulo, Paper and Print		0,011391544	0,00243042	0,000936592	6,08038E-06	0,001091717	0,001106868	0,001142221	0,000405388	0,004669404	0,000138053	6,57827E-05	1,56964E-05	3,48617E-06	3,94931E-06	4,11343E-06	4,04163E-07	5,70039E-06	0,003135629	0,00054114	8,55995E-05	0,000357827	5,66626E-05	4,7919E-05	0,000548008	2,52516E-05	3E-07	18,464286	NA.	19,72683698	5,05 NA	A NA	TJ NCV
B_Industry	1A2e	Stationary combustion in manufacturing industries and construction: Food processing,		0,378538826	0,066563953	0,033991242	0,000181282	0,034995215	0,035448419	0,036505896	0,01360296	0,136522555	0,00413563	0,001968158	0,000263347	6,71349E-05	0,003613952	0,001057642	0,000309942	0,000161285	0,097351435	0,016159186	0,002812906	0,012697314	0,001920571	0,001632436	0,019063227	0,00075534	9E-06	685,3137745	NA.	178,7251758	151 N	A NA	TJ NCV
B_Industry	1A2f	beverages and tobacco Stationary combustion in manufacturing industries and construction. Non-metallic minerals		IE	ΙE	ΙE	IE	ΙE	IE	ΙE	IE	IE	IE	ΙE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	ΙE	ΙE	IE	IE	IE	IE IE	E IE	TJ NCV
I_Offroad	1A2gvii	Mobile combustion in manufacturing industries and construction (please specify in the IIR)		0,89241369	0,092362041	0,001094013	0,000218803	0,05754508	0,05754508	0,05754508	0,032225245	0,29467238	NA.	0,000273503	NA.	NA.	0,001367516	0,046495549	0,001914523	0,000273503	0,027350323	NA.	0,00082051	0,001367516	NA	NA.	0,002188026	NA.	NA NA	1176,063889	NO	NO	NO NO	0 NO	TJ NCV
B_Industry	1A2gviii	Stationary combustion in manufacturing industries and construction: Other (please specify in the IIR)		2,779521825	0,144248981	0,463835685	0,00012183	0,093145371	0,093804661	0,094791226	0,04598163	1,327205024	0,074358928	0,006804015	0,033951391	0,018167255	0,031242358	0,045716246	0,033766074	0,017592246	0,453761743	0,023485138	0,009930426	0,125860947	0,007826726	0,006752294	0,150370392	0,000535161	0,0068	3725,231811	39,4126655	218,7703501	102 NO	D 0,673	84 TJ NCV
H_Aviation	1A3ai(i)	International aviation LTO (civil)		0,505648	0,0038896	0,0311168	NA	0,0029172	0,0029172	NA	0,001400256	0,1186328	NA	NA	NA.	NA	NA	NA	NA	NA.	NA.	NA.	NA	NA.	NA.	NA.	NA.	NA.	NA	NA.	NA.	NA	NA N	A 1944	8 TJ NCV
H_Aviation	1A3aii(i)	Domestic aviation LTO (civil)		0,001460549	5,70527E-05	0,000114105	NA	2,28211E-05	2,28211E-05	NA	1,09541E-05	0,000125516	NA	NA	NA	NA	NA	NA	NA	NA.	NA.	NA.	NA	NA.	NA.	NA.	NA.	NA.	NA NA	NA	NA	NA	NA N	A 4,906	53 TJ NCV
F_RoadTranspo rt	1A3bi	Road transport: Passenger cars		1,841150055	0,453448413	0,009305232	0,086047737	0,075996108	0,075996108	0,075996108	0,061612932	3,696667491	0,000225935	2,61985E-05	0,001650978	4,33858E-05	0,001958554	0,001338578	0,000239898	3,43816E-05	0,00591831	0,1298301	0,004319003	0,004846823	0,003766309	0,004162806	0,017094942	0,00012983	3E-05	12900,06251	NA	NA	NA NA	A NA	TJ NCV
F_RoadTranspo rt	1A3bii	Road transport: Light duty vehicles		0,795404307	0,027842696	0,001327152	0,002594334	0,026076072	0,026076072	0,026076072	0,02081129	0,226327882	3,5236E-05	3,5984E-06	0,000358054	7,00979E-06	0,000569925	0,000375994	1,71988E-05	6,82278E-06	0,001222489	0,0242775	0,001392237	0,001561071	0,00122349	0,001299447	0,005476245	2,42778E-05	5E-06	2835,156147	NA	NE	NA N	A NA	TJ NCV
F_RoadTranspo rt	1A3biii	Road transport: Heavy duty vehicles and buses		6,311817505	0,264172508	0,007095895	0,01316573	0,105014698	0,105014698	0,105014698	0,084798722	1,687933365	0,000177983	1,78196E-05	0,001882222	3,55859E-05	0,003014584	0,002021691	7,20768E-05	3,55327E-05	0,00639429	0,0745498	0,001767383	0,010702488	0,011959294	0,002749263	0,027178427	5,26496E-05	1E-05	15148,53594	NA	78,17061236	NA N	A NA	TJ NCV
F_RoadTranspo rt	1A3biv	Road transport: Mopeds & motorcycles		0,005418144	0,031169325	1,96766E-05	5,52439E-05	0,000394129	0,000394129	0,000394129	8,03664E-05	0,1027864	1,90255E-06	4,53046E-05	8,55933E-06	2,95149E-07	0,000196126	0,007700448	0,000317721	4,51067E-05	0,004485871	0,0003158	8,04873E-06	9,55062E-06	6,40836E-06	1,04583E-05	3,4466E-05	3,163E-07	1E-07	43,06620045	NA	NE	NA NA	A NA	TJ NCV
F_RoadTranspo rt	1A3bv	Road transport: Gasoline evaporation		NA	0,638461164	NA.	NA.	NA	NA	NA	NA	NA.	NA.	NA.	NA.	NA.	NA	NA	NA	NA.	NA.	NA.	NA	NA.	NA.	NA.	NA.	NA.	NA.	29,62487893	NA.	NA	NA N	A NA	TJ NCV
F_RoadTranspo rt	1A3bvi	Road transport: Automobile tyre and brake wear		NA	NA	NA	NA	0,105787736	0,201924944	0,260456577	0,010239962	NA	0,294860039	0,001326489	NA	0,003386487	0,10967842	2,404971568	0,017082884	0,002115756	0,844616636	NE.	NE	NE	NE	NE	NE	NE	NE	NA.	NA	NA	NA NA	A 7086,1	86 Mileage [10*6 km]
F_RoadTranspo rt	1A3bvii	Road transport: Automobile road abrasion		NA	NA	NA	NA	0,060965123	0,112898377	0,225796754	0,002393446	NA.	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NA.	NA	NA	NA N	A 7086,F	86 Mileage [10'6 km]
I_Offroad	1A3c	Rainays		0,049929386	0,009056016	4,41588E-05	1,10392E-05	0,001199484	0,001214312	0,001799198	7,79652E-06	0,01536192	NA.	1,10392E-06	NA	NA.	0,000055196	0,001876664	7,72744E-06	1,10392E-05	0,00110392	NA.	3,31176E-06	0,000055196	NA.	NA.	8,83136E-06	NA.	NA.	47,46856	NA	NA	NA N	A NA	TJ NCV
G_Shipping	1A3di(ii)	International inland waterways		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO NO	o No	TJNCV
G_Shipping	1A3di	National navigation (shipping)		0,004717181	0,000168256	1,52985E-06	NA	8,41281E-05	8,41281E-05	9,01372E-05	NA	0,000444677	7,81189E-06	6,00915E-07	1,80274E-06	2,40366E-06	3,00457E-06	5,28805E-05	6,00915E-05	6,00915E-06	3,00457E-05	7,81189E-06	NA	NA.	NA.	NA.	NA.	4,80732E-06	2E-06	2,583933579	NA	NA	NA N	A NA	TJ NCV
I_Offroad	1A3ei	Pipeline transport		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO N	o No	TJ NCV
I_Offroad	1A3eii	Other (please specify in the IIR)		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO N	O NO	TJ NCV

					Main P	ollutants			Particula	ate Matter		Other	Pri	iority Heavy Me	tals			Additional I	leavy Metals						POP (from 19							Activ	ity Data		
MK: 04.03.2024: 2022		NFR sectors to be reported			(from	1990)			(from	2000)		(from 1990)		(from 1990)				(from 1990, vo	luntary reportin	ig)					PAHs							(from	n 1990)		
				NOx (as NO ₂)	NMVOC	SOx (as SO ₂)	NH ₃	PM _{2.5}	PM ₁₀	TSP	BC	co	Pb	Cd	Hg	As	Cr	Cu	Ni	Se	Zn	PCDD/ PCDF (dioxins/ furans)	benzo(a) pyrene	benzo(b) fluoranthene	benzo(k) fluoranthene	Indeno (1,2,3- cd) pyrene	Total 1-4	HCB	PCBs	Liquid Fuels	Solid Fuels	Gaseous Fuels	Biom Othe ass Fuel	Other er activity is (specifie d)	Y
Aggregation for Gridding and LPS	NFR Code	Long name	Notes	kt	kt	kt	kt	kt	kt	kt	kt	kt	t	t	t	t	t	t	t	t	t	g I-TEQ	t	t	t	t	t	kg	kg	TJ NCV	TJ NCV	TJ NCV	TJ TJ		
G_Shipping	1A3di(ii)	International inland waterways		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO NO	NO	TJ NCV
G_Shipping	1A3di	National navigation (shipping)		0,004717181	0,000168256	1,52985E-06	i NA	8,41281E-05	8,41281E-05	9,01372E-05	NA	0,000444677	7,81189E-06	6,00915E-07	1,80274E-06	2,40366E-06	3,00457E-06	5,28805E-05	6,00915E-08	5 6,00915E-06	3,00457E-05	7,81189E-06	NA	NA	NA	NA	NA	4,80732E-06	2E-06	2,583933579	NA.	NA	NA NA	. NA	TJ NCV
I_Offroad	1A3ei	Pipeline transport		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO NO	NO	TJ NCV
I_Offroad	1A3eii	Other (please specify in the IIR)		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO NO	NO NO	TJ NCV
C_OtherStationa ryComb	1A4ai	Commercial/Institutional: Stationary		0,064814188	0,081195797	0,023565985	i NA	0,042668859	0,043798686	0,045625419	0,01197992	0,16774852	0,009362305	0,00323791	0,000285714	0,000168839	0,006707837	0,001996012	0,01121386	2 0,000169882	0,130650023	0,028300516	0,003154625	0,004836576	0,001592016	0,001266641	0,010849859	0,001257901	0,0026	84,16802807	15,26345681	189,6437613	246 NC	NO NO	TJ NCV
I_Offroad	1A4aii	Commercial/Institutional: Mobile		0,622397718	0,064416228	0,000762999	0,0001526	0,040133771	0,040133771	0,040133771	0,022474912	0,205513899	NA	0,00019075	NA	NA	0,000953749	0,032427476	0,00133524	9 0,00019075	0,019074986	NA.	0,00057225	0,000762999	NA	NA	0,001335249	NA.	NA.	IE	814,6926521	ΙE	IE NA	. NA	TJ NCV
C_OtherStationaryComb	1A4bi	Residential: Stationary		0,412032656	4,743723901	0,113425399	1,063216516	5,84994481	6,008011768	6,324275956	0,58506627	31,64816344	0,213990148	0,102732106	0,00448846	0,001514404	0,181861179	0,047561359	0,01586743	3 1,004537673	4,046971365	6,327279053	0,957277335	0,878734783	0,332536671	0,561621866	2,730170655	0,039512437	0,0013	315,7563419	4,888903481	5,82827897	7902 NA	. NA	TJ NCV
I_Offroad	1A4bii	Residential: Household and gardening (mobile)		0,001308689	0,534469065	0,000526457	2,89262E-06	NE	NE	0,003080638	NE	1,033445706	0,376861086	6,57413E-06	NA	NA	3,28707E-05	0,001117602	4,60189E-05	6,57413E-06	0,000657413	NA.	NE	NE	NE	NA	NA	NA.	NA.	IE	NA.	NA	IE NA	. NA	TJ NCV
C_OtherStationa ryComb	1A4ci	Agriculture/Forestry/Fishing: Stationary		0,053912105	0,02569575	0,068317463	5,89846E-05	0,018387163	0,019495052	0,020344021	0,004317198	0,103097604	0,010927706	0,000897446	0,000537517	0,000322105	0,003431871	0,001814365	0,01635560	2 0,000153988	0,044881015	0,0192852	0,003424576	0,004814874	0,001771562	0,001388611	0,011199623	0,0003607	0,0106	123,4222147	62,29660475	NA.	59 NA	. NA	TJ NCV
I_Offroad	1A4cii	Agriculture/Forestry/Fishing: Off-road vehicles and other machinery		0,233262362	0,031532666	NA.	5,51339E-05	0,012851318	0,012851318	0,012851318	0,007810479	0,397102042	NA	7,09971E-05	NA	NA	0,000354986	0,012069514	0,00049698	NA.	0,007099714	NA.	0,000217151	0,000350826	NA	NA.	0,000567977	NA.	NA.	305,6870284	NA.	NA.	NA NA	. NA	TJ NCV
I_Offroad	1A4ciii	Agriculture/Forestry/Fishing: National fishing		NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE NE	NE	TJ NCV
C_OtherStationa ryComb	1A5a	Other stationary (including military)		NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE NE	NE	TJ NCV
I_Offroad	1A5b	Other, Mobile (including military, land based and recreational boats)		0,020411369	0,010643143	0,000459274	. NA	0,001181572	0,001181572	0,001181572	0,000661681	0,557175065	NA.	5,6643E-06	NA	NA	2,83215E-05	0,000962931	3,96501E-08	5,6643E-06	0,00056643	NA.	1,69929E-05	2,83215E-05	NA.	NA.	4,53144E-05	NA.	NA.	44,54517312	NA.	NA.	NA NA	. NA	TJ NCV
D_Fugitive	1B1a	Fugitive emission from solid fuels: Coal mining and handling		NA.	1,01589897	NA.	NA.	0,030476969	0,198100299	0,416518578	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA.	NA	NA	NA	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA NA	5,07949	9 Coal produced [Mt]
D_Fugitive	1B1b	Fugitive emission from solid fuels: Solid fuel transformation		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NE	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO NO	NO	Coal used for transformation [Mt]
D_Fugitive	1B1c	Other fugitive emissions from solid fuels		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO NO	NO	Please specify and/or provide details in the IIR
D_Fugitive	1B2ei	Fugitive emissions oil: Exploration, production, transport		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO NO	NO	Crude oil produced [Mt]
D_Fugitive	1B2aiv	Fugitive emissions oil: Refining and storage		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO NO	NO	Crude oil refined [Mt]
D_Fugitive	1B2av	Distribution of oil products		NA.	4,598374754	. NA	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA	NA	NA	NA	NA	NA.	NA.	NA.	NA.	NA	NA NA	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA NA	1,02142	2 Oil consumed [Mt]
D_Fugitive	1B2b	Fugitive emissions from natural gas (exploration, production, processing, transmission, storage, distribution		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO NO	NO	Gas throughput [TJ]
D_Fugitive	1B2c	venting and flaring (oil, gas, combined oil and gas)		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO NO	NO	Gas vented flared
D_Fugitive	1B2d	Other fugitive emissions from energy production		NA.	NA.	NA NA	0,122134716	s NA	NA.	NA.	NA.	NA NA	NA.	NA NA	2,55901E-05	1,45398E-06	NA	NA	NA.	NA.	NA.	NA.	NA	NA	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA NA	58159,4	Please specify 4 and/or provide details in the IIR


					Main P	ollutants			Particula	ite Matter		Other	Prid	ority Heavy Me	tals			Additional H	eavy Metals						POPs (from 19							Activ	vity Data		
MK: 04.03.2024: 2022		NFR sectors to be reported			(from	1990)			(from	2000)		(from 1990)		(from 1990)				from 1990, volu	untary reporting)					PAHs							(fror	m 1990)		
				NOx (as NO ₂)	NMVOC	SOx (as SO ₂)	NH ₃	PM _{2.5}	PM ₁₀	TSP	BC	со	Pb	Cd	Hg	As	Cr	Cu	Ni	Se	Zn	PCDD/ PCDF (dioxins/ furans)	benzo(a) pyrene	benzo(b) fluoranthene	benzo(k) fluoranthene	Indeno (1,2,3- cd) pyrene	Total 1-4	нсв	PCBs	Liquid Fuels	Solid Fuels	Gaseous Fuels	Biom Oth	Other er activity els (specifie d)	Other Activity Units
Aggregation for Gridding and LPS	NFR Code	Long name	Notes	kt	kt	kt	kt	kt	kt	kt	kt	kt	t	t	t	t	t	t	t	t	t	g I-TEQ	t	t	t	t	t	kg	kg	TJ NCV	TJ NCV	TJ NCV	TJ TJ	, -,	
B_Industry	2A1	Cement production		NA.	NA.	NA.	NA	0,03086	0,04536	0,02232	0,0009198	NA	NA	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA	NA.	NA	NA	NA	NA	NE	NA.	NA	NA	NA NA	673,831	7 Clinker produced [kt]
B_Industry	2A2	Lime production	П	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO NO	O NO	Lime produced [kt]
B_Industry	2A3	Glass production	П	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO NO	O NO	Glass produced [kt]
B_Industry	2A5a	Quarrying and mining of minerals other than coal	П	NA	NA.	NA.	NA	0,034265785	0,34265785	0,699022014	NA	NA NA	NA	NA NA	NA.	NA.	NA.	NA	NA.	NA.	NA.	NA.	NA	NA NA	NA	NA NA	NA	NA	NA NA	NA .	NA.	NA	NA NA	6853,16	6 Material quarried [kt]
B_industry	2A5b	Construction and demolition	Н	NA.	NA.	NA.	NA	0,05289412	0,5289412	1,7624759	NA.	NA NA	NA	NA NA	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA NA	NA	NA NA	NA NA	NA.	NA.	NA NA	NA.	NA.	NA NA	A 1716837	Floor space 7 constructed/demolis hed [m2]
B_Industry	2A5c	Storage, handling and transport of mineral products	П	NA.	NA.	NA.	NA	0,005089668	0,06089668	0,10179336	NA	NA NA	NA	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA	NA NA	NA	NA.	NA.	NA	NA	NA.	NA NA	8482,78	B Amount [kt]
B_Industry	2A6	Other mineral products (please specify in the IIR)	П	NA	NA.	NA.	NA.	NA.	NA.	NA NA	NA	NA	NA	NA	NA.	NA.	NA.	NA	NA.	NA.	NA.	NA.	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO NO	O NO	Please specify and/or provide details in the IIR
B_Industry	281	Ammonia production	П	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO NO	O NO	
B_Industry	282	Nitric acid production	П	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO NO	o NO	Nitric acid produced [kt]
B_Industry	283	Adipic acid production	Н	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO NO	o NO	Adipic acid produced [kt]
B_Industry	285	Carbide production	Н	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO NO	o NO	Carbide produced [kt]
B_Industry	286	Titanium dioxide production	П	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO NO	o NO	Titanium dioxide produced [kt]
B_Industry	287	Soda ash production		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO NO	o NO	Soda ash produced [kt]
B_Industry	2B10a	Chemical industry: Other (please specify in the IIR)	Н	NA	0,000897984	NA.	NA	0,00004677	0,0009354	0,002460102	NA.	NA NA	NA	NA NA	NA.	NA.	NA.	NA NA	NA.	NA.	NA.	NA.	NA.	NA NA	NA	NA NA	NA	NA	NA.	NA.	NA.	NA.	NA NA	A NA	Please specify and/or provide details in the IIR
B_Industry	2B10b	Storage, handling and transport of chemical products (please specify in the IIR)	,	IE	IE	IE	IE	IE	IE	IE	ΙE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	ΙE	IE	IE	IE	IE	ΙE	IE	IE	IE	IE IE	IE.	Please specify and/or provide details in the IIR
B_Industry	2C1	Iron and steel production	Н	0,03295084	0,014741404	0,01520808	NE	0,005322828	0,006083232	0,02103138	1,91622E-05	0,4308956	0,380202	0,03041616	0,019263568	0,002053091	0,02661414	0,00506936	0,10392188	NE	0,5829764	0,760404	NE	NE	NE	NE	0,12166464	NE	0,6337	NA NA	NA	NA.	NA NA	792,321	9 Steel produced [kt]
B_Industry	2C2	Ferroalloys production	П	NA	NA.	NA.	NA	0,0231906	0,03285335	0,038651	0,00231906	NA NA	NA	NA NA	NA.	NA.	NA.	NA	NA.	NA.	NA.	NA.	NA	NA	NA	NA NA	NA	NA	NA.	NA NA	NA	NA.	NA NA	38,651	Ferroalloys produced [kt]
B_Industry	203	Aluminium production		NA	NA.	NA.	NA	NE	NE	NE	NE	NA NA	NA	NA	NA.	NA.	NA.	NA	NA.	NA.	NA.	NE	NA	NA NA	NA	NA	NA	NE	NA	NA.	NA	NA	NA NA	A NE	Aluminium produced
B_Industry	2C4	Magnesium production	Н	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO NO	o NO	Magnesium produced [kt]
B_Industry	205	Lead production	Н	NA	NA.	0,058735	NA.	0,000093976	0,000187952	0,00023494	NA.	NA NA	0,0129217	0,00058735	NE	0,0035241	NA.	NA NA	NA.	NA.	0,00058735	0,0375904	NA.	NA NA	NA	NA NA	NA	NA.	30,542	NA.	NA.	NA.	NA NA	11,747	Lead produced [kt]
B_Industry	2C6	Zinc production	Н	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO NO	o NO	Zinc produced [kt]
B_Industry	2C7a	Copper production	Н	NA.	NA	NE	NA.	NE	NE	NE	NE	NA	NE	NE	NA.	NE	NA.	NE	NE	NA.	NA.	NE	NA NA	NA	NA	NA NA	NA	NA.	NE	NA .	NA	NA.	NA NA	A NE	Copper produced [kt]

					Main Po	llutants			Particula	nte Matter		Other	Dr	iority Heavy M	etals			Additional	leavy Metals						POP (from 19	s (90)						Activ	rity Data		
MK: 04.03.2024: 2022		NFR sectors to be reported			(from	1990)			(from	2000)		(from 1990)	,	(from 1990)				(from 1990, vo	untary reporting	2)					PAHs							(from	n 1990)		
				NOx (as NO ₂)	NMVOC	SOx (as SO ₂)	NH ₃	PM _{2.5}	PM ₁₀	TSP	вс	co	Pb	Cd	Hg	As	Cr	Cu	Ni	Se	Zn	PCDD/ PCDI (dioxins/ furans)	benzo(a) pyrene	benzo(b) fluoranthene	benzo(k) fluoranthene	Indeno (1,2,3- cd) pyrene	Total 1-4	нсв	PCBs	Liquid Fuels	Solid Fuels	Gaseous Fuels	Biom Othe	Other activity Is (specifie d)	
Aggregation for Gridding and LPS	NFR Code	Long name	Notes	kt	kt	kt	kt	kt	kt	kt	kt	kt	t	t	t	t	t	t	t	t	t	g I-TEQ	t	t	t	t	t	kg	kg	TJ NCV	TJ NCV	TJ NCV	TJ TJ		
B_Industry	2C7b	Nickel production		NO	NO	NO	NO	NO	NO	NO	NE	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO NO	NO NO	Nickel produced [kt]
B_industry	2C7c	Other metal production (please specify in the IIR)		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO NO	NO NO	Please specify and/or provide details in the IIR
B_Industry	2C7d	Storage, handling and transport of metal products (please specify in the IIR)		IE	IE	ΙE	IE	ΙE	IE	IE	ΙE	IE	ΙE	IE	ΙE	ΙE	IE	ΙE	IE	IE	IE	IE	ΙE	IE	ΙE	IE	ΙE	ΙE	ΙE	IE	ΙE	IE	IE IE	IE	Amount (kt)
E_Solvents	2D3a	Domestic solvent use including fungicides		NA.	3,362406454	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA.	NA	NA.	NA	NA.	NA	NA NA	NA.	Solvents used [kt]
B_Industry	2D3b	Road paving with asphalt		NA	0,008646256	NA	NA	0,002161564	0,01621173	0,07565474	0,000123209	NA.	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA.	NA.	NA	NA	NA.	NA	NA	NA NA	540,391	Please specify 1 and/or provide details in the IIR
B_Industry	2D3c	Asphalt roofing		NE	0,00228319	NA	NA	0,00140504	0,0070252	0,0281008	1,82655E-07	0,000166849	NE	NE	NE	NA	NA	NA	NA.	NA.	NA	NE	NE	NE	NE	NE	NA.	NE	NA.	NA.	NA.	NA	NA NA	17,563	Please specify and/or provide details in the IIR
E_Solvents	2D3d	Coating applications		NA	2,57764375	NA	NA	NA	NA	NA NA	NA	NA	NA	NA.	NA	NA	NA	NA.	NA	NA.	NA	NA	NA	NA	NA	NA	NA.	NA	NA.	NA.	NA	NA	NA NA	10,310€	6 Paint applied [kt]
E_Solvents	2D3e	Degreasing		NA.	1,5554609	NA	NA	NA.	NA.	NA.	NA	NA.	NA	NA.	NA	NA	NA.	NA.	NA.	NA.	NA	NA	NA	NA	NA	NA.	NA.	NA	NA.	NA.	NA.	NA	NA NA	. NA	Solvents used [kt]
E_Solvents	2D3f	Dry cleaning	П	NA.	0,5489862	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA.	NA	NA.	NA.	NA	NA	NA NA	1829,96	5 Solvents used [kt]
E_Solvents	2D3g	Chemical products		NA.	0,612272	NA.	0,00006732	NA.	NA.	0,024	NA.	NA.	NA.	0,0000002	NA	0,000001	0,000012	NA.	0,0001	0,000001	NA.	NA.	NA	NA	NA	NA.	0,0051	NA	NA.	NA.	NA.	NA.	NA NA	. NA	Please specify and/or provide details in the IIR
E_Solvents	2D3h	Printing		NA.	0,018265	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA.	NA.	NA	NA	NA	NA	NA	NA	NA	NA.	NA.	NA	NA	NA.	NA	NA	NA NA	NA.	Please specify and/or provide details in the IIR
E_Solvents	2D3i	Other solvent use (please specify in the IIR)	П	NE	0,009277059	NE	NE	0,000045129	6,76935E-05	8,27365E-05	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	4,6231E-05	4,6231E-05	4,6231E-05	0,000230283	0,000368976	NE	NE	NA.	NA.	NA	NA NA	NA.	Please specify and/or provide details in the IIR
E_Solvents	2G	Other product use (please specify in the IIR)		0,001955509	0,038513332	NE	0,004508535	0,029332638	0,029332638	0,029332638	0,000131997	0,059860309	5,43197E-08	5,86653E-06	1,08639E-07	1,73823E-07	3,80238E-07	0,005866528	NE	NE	NE	1,08639E-07	0,00012059	4,88877E-05	4,88877E-05	4,88877E-05	0,000267253	NE	NE	NA.	NA	NA	NA NA	. NA	Please specify and/or provide details in the IIR
B_Industry	2H1	Pulp and paper industry		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO NO	NO NO	Pulp production [kt]
B_Industry	2H2	Food and beverages industry	П	NA	0,595259101	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA.	NA.	NA	NA.	NA	NA	NA	NA.	NA	NA.	NA.	NA	NA	NA NA	NA.	Bread, Wine, Beer, Spirits production [kt]
B_Industry	2H3	Other industrial processes (please specify in the IIR)		NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NA.	NA.	NA	NA NA	NA.	Please specify and/or provide details in the IIR
B_Industry	21	Wood processing	П	NA	NA	NA	NA	NA	NA	0,010136199	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA.	NA.	NA	NA.	NA.	NA NA	NA	NA NA	10,1362	Please specify and/or provide details in the IIR
B_Industry	2,1	Production of POPs		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO NO	NO NO	Please specify and/or provide details in the IIR
B_Industry	2K	Consumption of POPs and heavy metals (e.g. electrical and scientific	П	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	0,01829954	NA	NA	NA.	NA	NA	NA	NA	NA.	NA	NA	NA.	NA.	NA	210,71	NO	NO	NO	NO NO	NO NO	Please specify and/or provide details in the IIR
B_Industry	2L	equipment) Other production, consumption, storage, transportation or handling of bulk products (please specify in the IIR)		NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE NE	. NE	Please specify and/or provide details in the IIR

					Main Pe	ollutants		Particulate Matter (from 2000)				Other	Pri	ority Heavy Me	tals			Additional H	eavy Metals						POPs (from 19	i 90)	Activity Data								
MK: 04.03.2024: 2022		NFR sectors to be reported			(from	1990)			(from	2000)		(from 1990)		(from 1990)				(from 1990, vol	intary reporting)		PAHs								(from 1990)					
				NOx (as NO ₂)	NMVOC	SOx (as SO ₂)	NH ₃	PM _{2.5}	PM ₁₀	TSP	BC	co	Pb	Cd	Hg	As	Cr	Cu	Ni	Se	Zn	PCDD/ PCDF (dioxins/ furans)	benzo(a) pyrene	benzo(b) fluoranthene	benzo(k) fluoranthene	Indeno (1,2,3- cd) pyrene	Total 1-4	нсв	PCBs	Liquid Fuels	Solid Fuels	Gaseous Fuels	Biom Oth	Other er activity els (specifie d)	y
Aggregation for Gridding and LPS	NFR Code	Long name	Notes	kt	kt	kt	kt	kt	kt	kt	kt	kt	t	t	t	t	t	t	t	t	t	g I-TEQ	t	t	t	t	t	kg	kg	TJ NCV	TJ NCV	TJ NCV	TJ T.	,	
K_AgriLivestock	3B1a	Manure management - Dairy cattle		0,075381984	1,345197519	NA	1,6138962	0,04109922	0,06315246	0,13833396	NA	NA	NA.	NA.	NA.	NA.	NA	NA.	NA	NA.	NA	NA	NA.	NA.	NA.	NA.	NA	NA	NA.	NO	NO	NO	NO N	100,24	Population size (1000 head)
K_AgriLivestock	3B1b	Manure management - Non-dairy cattle		0,013998453	0,403310268	NA.	0,3677013	0,01161162	0,01741743	0,03806031	NA.	NE	NA.	NA.	NA.	NA.	NA.	NA.	NA	NA.	NA	NA	NA.	NA.	NA.	NA NA	NA .	NA.	NA.	NO	NO	NO	NO NO	64,509	Population size (1000 head)
K_AgriLivestock	3B2	Manure management - Sheep		0,007757856	0,109256472	NA	0,2585952	0,01292976	0,03878928	0,09050832	NA	NA	NA	NA.	NA.	NA.	NA	NA	NA	NA.	NA	NA	NA.	NA.	NA.	NA	NA	NA	NA.	NO	NO	NO	NO N	646,488	Population size (1000 head)
K_AgriLivestock	3B3	Manure management - Swine		0,000429579	0,125354725	NA	0,8644564	0,001181452	0,02620827	0,18250769	NA	NA	NA.	NA.	NA.	NA.	NA	NA.	NA	NA.	NA	NA	NA.	NA.	NA.	NA.	NA	NA	NA.	NO	NO	NO	NO N	182,604	Population size (1000 head)
K_AgriLivestock	3B4a	Manure management - Buffalo		ΙE	ΙE	IE	ΙE	IE	IE	ΙE	NA	NA	NA.	NA.	NA.	NA.	NA.	NA.	NA	NA.	NA.	NA	NA.	NA.	NA.	NA.	NA.	NA	NA.	NA.	NA.	NA.	NA N	IE.	Population size (1000 head)
K_AgriLivestock	3B4d	Manure management - Goats		0,000962232	0,043460812	NA.	0,0320744	0,000160372	0,00481116	0,01122604	NA	NA	NA	NA.	NA.	NA.	NA	NA	NA	NA	NA	NA	NA.	NA.	NA.	NA.	NA	NA	NA.	NA.	NA.	NA	NA N	80,186	Population size (1000 head)
K_AgriLivestock	3B4e	Manure management - Horses		0,00266475	0,045567225	NA	0,074613	0,00149226	0,00234498	0,00511632	NA	NA	NA	NA.	NA.	NA	NA.	NA	NA	NA	NA	NA	NA	NA.	NA.	NA.	NA	NA	NA.	NA	NA	NA	NA N	10,659	Population size (1000 head)
K_AgriLivestock	3B4f	Manure management - Mules and asses		NE	NE	NA.	NE	NE	NE	NE	NA	NA	NA	NA.	NA.	NA	NA.	NA	NA	NA	NA	NA	NO	NO	NO	NO	NO	NO	NO	NA	NA	NA	NA N	NE NE	Population size (1000 head)
K_AgriLivestock	3B4gi	Manure management - Laying hens		0,019139288	0,22557018	NA	0,43746944	0,004101276	0,05468368	0,25974748	NA	NA	NA	NA.	NA.	NA.	NA	NA	NA	NA	NA	NA	NA	NA.	NA.	NA.	NA	NA	NA.	NA	NA	NA	NA N	1367,09	Population size (1000 head)
K_AgriLivestock	3B4gii	Manure management - Broilers		0,003356964	0,013427856	NA	0,01616316	0,000248664	0,00248664	0,00497328	NA	NA	NA.	NA.	NA.	NA.	NA	NA	NA	NA.	NA	NA	NA.	NA.	NA.	NA.	NA	NA	NA.	NA	NA	NA	NA N	124,332	Population size (1000 head)
K_AgriLivestock	3B4gii	Manure management - Turkeys		0,000364554	0,006602478	NA	0,00756112	0,00027004	0,00148522	0,00148522	NA	NA	NA	NA.	NA.	NA.	NA	NA	NA	NA	NA	NA	NA.	NA.	NA.	NA.	NA	NA	NA.	NA	NA.	NA	NA N	13,502	Population size (1000 head)
K_AgriLivestock	3B4giv	Manure management - Other poultry		0,001067647	0,005364819	NA.	0,0240075	0,00124985	0,00907808	0,00907808	NA	NA	NA	NA.	NA.	NA.	NA	NA.	NA	NA.	NA	NA	NA.	NA.	NA.	NA.	NA	NA	NA.	NA	NA	NA	NA N	10,971	Population size (1000 head)
K_AgriLivestock	3B4h	Manure management - Other animals (please specify in the IIR)		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO N) NO	Population size (1000 head)
L_AgriOther	3De1	Inorganic N-fertilizers (includes also urea application)		0,369389098	NA	NA.	0,763801214	NA	NA	NA	NA	NA	NA	NA.	NA.	NA.	NA	NA.	NA	NA.	NA	NA	NA.	NA.	NA.	NA	NA.	NA	NA.	NA.	NA.	NA	NA N		Use of inorganic fertilizers (kg N)
L_AgriOther	3Da2a	Animal manure applied to soils		IE	IE	NA	1,6060086	NA	NA	NA	NA	NA	NA	NA.	NA.	NA.	NA.	NA	NA	NA.	NA	NA	NA.	NA.	NA.	NA	NA	NA	NA.	NA	NA.	NA	NA N	NA NA	Please specify and/or provide details in the IIR
L_AgriOther	3Da2b	Sewage sludge applied to soils		NE	NA	NA.	NE	NA	NA	NA	NA	NA	NA	NA.	NA.	NA.	NA	NA	NA	NA.	NA	NA	NO	NO	NO	NO	NO	NO	NO	NA	NA	NA.	NA N	NA NA	Please specify and/or provide details in the IIR
L_AgriOther	3Da2c	Other organic fertilisers applied to soils (including compost)		NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA.	NA.	NA	NA	NA	NA.	NA	NA	NO	NO	NO	NO	NO	NO	NO	NA	NA .	NA	NA N	NA NA	Please specify and/or provide details in the IIR
L_AgriOther	3Da3	Urine and dung deposited by grazing animals		ΙE	ΙE	NA	0,9886681	NA	NA	NA	NA	NA	NA.	NA.	NA.	NA.	NA	NA.	NA	NA.	NA	NA	NA.	NA.	NA.	NA.	NA	NA	NA.	NA	NA.	NA	NA N	NA.	Please specify and/or provide details in the IIR
L_AgriOther	3Da4	Crop residues applied to soils		NA.	NA	NA	NA	NA	NA	NA.	NA	NA	NA.	NA.	NA.	NA.	NA	NA.	NA	NA.	NA	NA	NO	NO	NO	NO	NO	NO	NO	NA.	NA.	NA	NA N	NA.	Please specify and/or provide details in the IIR
L_AgriOther	3Db	Indirect emissions from managed soils		NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA.	NA.	NA	NA	NA	NA	NA	NA	NO	NO	NO	NO	NO	NO	NO	NA.	NA.	NA	NA N	NA NA	Please specify and/or provide details in the IIR
L_AgriOther	3De	Farm-level agricultural operations including storage, handling and transport of agricultural products		NA.	NA	NA	NA	0,07541124	1,96069224	1,96069224	NA	NA	NA.	NA.	NA.	NA.	NA	NA.	NA	NA.	NA	NA	NA.	NA.	NA.	NA.	NA	NA	NA.	NA.	NA.	NA	NA N	125685	Please specify and/or provide details in the IIR
L_AgriOther	3Dd	Off-farm storage, handling and transport of bulk agricultural products		NA.	NA	NA	NA	NE	NE	NE	NA	NA	NA	NA	NA.	NA.	NA	NA	NA	NA	NA	NA	NO	NO	NO	NO	NO	NO	NO	NA	NA	NA	NA N	NO NO	Please specify and/or provide details in the IIR
L_AgriOther	3De	Cultivated crops		NA.	1,08089444	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA.	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA.	NA	NA	NA.	NA	NA.	NA	NA N	1256854	Please specify and/or provide details in the IIR
L_AgriOther	3Df	Use of pesticides		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO N) NO	Please specify and/or provide details in the IIR
L_AgriOther	3F	Field burning of agricultural residues		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO N	O NO	Area burned [ha]
L_AgriOther	31	Agriculture other (please specify in the IIR)		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO N	NO NO	Please specify and/or provide details in the IIR

					Main Po	flutants		Particulate Matter Other					Pric	ority Heavy Mo	tals			Additional H	eavy Metals						POP (from 1	s 990)			Activity Data (from 1990)							
MK: 04.03.2024: 2022		NFR sectors to be reported			(from	1990)			(from	2000)		(from 1990)		(from 1990)				(from 1990, vol	untary reporting	2)					PAHs											
				NOx (as NO ₂)	NMVOC	SOx (as SO ₂)	NH ₃	PM _{2.5}	PM ₁₀	TSP	BC	co	Pb	Cd	Hg	As	Cr	Cu	Ni	Se	Zn	PCDD/ PCDF (dioxins/ furans)	benzo(a) pyrene	benzo(b) fluoranthene	benzo(k) fluoranthene	Indeno (1,2,3- cd) pyrene	Total 1-4	HCB	PCBs	Liquid Fuels	Solid Fuels	Gaseous Fuels	Biom Oth	Other er activit els (specif d)	of Other Activity Units	
J_Waste	5A	Biological treatment of waste - Solid waste disposal on land		NA	0,080062227	NA	0,001251904	0,00008218	0,0005454	0,00115306	NA	2,83561917	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA.	NA.	NA	NA	NA N	2,490	42 Deposition [kt]	
J_Waste	5B1	Biological treatment of waste - Composting		NA	NA	NA	0,0000288	NA	NA	NA	NA	NA	NA.	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA.	NA	NA	NA	NA.	NO	NO	NO	NO N	0,12	Organic domestic waste [kt]	
J_Waste	582	Biological treatment of waste - Anaerobic digestion at biogas facilities		NA.	NA	NA.	NE	NA	NA	NA	NA.	NA .	NA.	NA.	NA.	NA.	NA.	NA.	NA	NA	NA	NA	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO N	O NO	N in feedstock [kt]	
J_Waste	5C1a	Municipal waste incineration		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO N	O NO	Waste incinerated [kt]	
J_Waste	5С1Ы	Industrial waste incineration		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO N	O NO	Waste incinerated [kt]	
J_Waste	5С1ыі	Hazardous waste incineration		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO N	o No	Waste incinerated [kt]	
J_Waste	SC1biii	Clinical waste incineration	c	0,001476311	0,000738156	0,001476311	NA	NA	NA	0,000527254	1,21268E-05	0,002952622	0,066644908	0,007750634	0,004713651	0,00137086	0,002109016	0,002741721	0,002109016	NA.	NA	0,148685628	NA	NA.	NA.	NA.	4,21803E-08	0,1054508	0,0211	NA.	NA	NA	NA N	A 1,0548	51 Waste incinerated [kt]	
J_Waste	5C1biv	Sewage sludge incineration		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO N	O NO	Sludge incinerated [kt]	
J_Waste	5C1bv	Cremation		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO N	O NO	Corpses [Number]	
J_Waste	5C1bvi	Other waste incineration (please specify in the IIR)		NA.	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA.	NA	NA	NA	NA	NA	NA	NA	NA.	NA.	NA	NA	NA.	NA	NA.	NA	NA	NA N	A NA	Please specify and/or provide details in the IIR	
J_Waste	5C2	Open burning of waste		0,04090	0,01582	0,001414699	NE	0,053887171	0,058002659	0,059674576	0,022632612	0,718024047	0,006301841	0,00128609	NE	0,005272969	0,000128609	0,00257218	NE	0,000900263	0,225451577	0,128609	0,029965897	0,059545967	0,073049912	. NE	0,162561776	NE	NA.	NA.	NA	NA	NA N	A NA	Please specify and/or provide details in the IIR	
J_Waste	5D1	Domestic wastewater handling		NA.	0,000447921	NA	NE	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA.	NA	NA.	NA	NA	NA	NA N	4 29861	.4 Total organic product [kt DC]	
J_Waste	5D2	Industrial wastewater handling		NA	0,004981875	NA	NE	NA	NA	NA	NA	NA	NA.	NA	NA.	NA.	NA	NA	NA	NA	NA	NA	NA	NA.	NA.	NA	NA.	NA	NA.	NA.	NA	NA	NA N	A 33212	Total organic product [kt DC]	
J_Waste	5D3	Other wastewater handling		NA.	NA	NA.	NA	NA	NA	NA	NA.	NA	NA.	NA.	NA.	NA.	NA.	NA	NA	NA.	NA	NA	NA	NA.	NA.	NA.	NA.	NA.	NA.	NO	NO	NO	NO N	O NO	Total organic product [kt DC]	
J_Waste	5E	Other waste (please specify in the IIR)		NA.	NA	NA	NE	NE	NE	NE	NE	NA	NE	NE	NA.	NE	NE	NE	NA	NA	NA	NE	NA	NA.	NA.	NA.	NA.	NA	NA.	NA.	NA	NA	NA N	A NA	Please specify and/or provide details in the IIR	
M_Other	6A	Other (included in national total for entire territory) (please specify in the IIR)		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO N	O NO	Please specify and/or provide details in the IIR	
	NATIONAL TOTAL	National total (based on fuel sold)	(a)	22,70	26,08	90,57	8,35	8,41	13,54	17,93	0,97	49,88	2,22	0,23	0,19	0,49	0,69	2,73	2,36	2,34	7,98	8,50	1,12	1,25	0,49	0,62	3,61	0,15	242,31							
																																		\perp		
	1A3bi(fu)	Road transport: Passenger cars (fuel used)	(b)	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE NI	E NE	TJ NCV	
	1A3bii(fu)	Road transport: Light duty vehicles (fuel used)	(b)	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE NI	E NE	TJ NCV	
	1A3bii(fu)	Road transport: Heavy duty vehicles and buses (fuel used)	(b)	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE NI	E NE	TJ NCV	
	1A3biv(fu)	Road transport: Mopeds & motorcycles (fuel used)	(b)	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE NI	E NE	TJ NCV	
	1A3bv(fu)	Road transport: Gasoline evaporation (fuel used)	(b)	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE NI	E NE	TJ NOV	
	1A3bvi(fu)	Road transport: Automobile tyre and brake wear (fuel used)	(b)	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE NI	E NE	Mileage [10°6 km]	
	1A3bvii(fu)	Road transport: Automobile road abrasion (fuel used)	(b)	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE NI	E NE	Mileage [10°6 km]	

																									POP	s									
MK:					Main Po (from	illutants 1990)			Particulate Matter (from 2000)				Pric	ority Heavy Mo (from 1990)				Additional F (from 1990, vol	eavy Metals untary reporting	3)		(from 1990)								Activity Data (from 1990)					
04.03.2024: 2022		NFR sectors to be reported																				PAHs													
				NOx (as NO ₂)	NMVOC	SOx (as SO ₂)	NH ₃	PM _{2.5}	PM ₁₀	TSP	BC	co	Pb	Cd	Hg	As	Cr	Cu	Ni	Se	Zn	PCDD/ PCDF (dioxins/ furans)	benzo(a) pyrene	benzo(b) fluoranthene		Indeno (1,2,3- cd) pyrene	Total 1-4	нсв	PCBs	Liquid Fuels	Solid Fuels	Gaseous Fuels	Biom Othe ass Fuel	Other activity els (specifi d)	ty file Other Activity Units
	ADJUSTMENTS	Sum of approved adjustments 6 (negative value) from Annex VII (CLRTAP)		NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE NE	NO.	
	COMPLIANCE TOTAL (CLRTAP)	National total for compliance calculations and checks (CLRTAP)	(c)	22,70	26,08	90,67	8,35	8,41	13,54	17,93	0,97	49,88	2,22	0,23	0,19	0,49	0,69	2,73	2,36	2,34	7,98	8,50	1,12	1,25	0,49	0,62	3,61	0,15	242,31						
	AND	S Sum of approved adjustments from Annex VII and other flexibilities is (negative value) (NECD)	(d)																																
	COMPLIANCE TOTAL (NECD)	National total for compliance calculations and checks (NECD)	(e)	22,20	22,67	90,57	8,35	8,41	13,54	17,93	0,97	49,88	2,22	0,23	0,19	0,49	0,69	2,73	2,36	2,34	7,98	8,50	1,12	1,25	0,49	0,62	3,61	0,15	242,31						
																																	П		
MEMO ITEMS	- NOT TO BE INCL	LUDED IN NATIONAL TOTALS																																	
O_AviCruise	1A3ai(ii)	International aviation cruise (civil)	c	0,103538666	0,491808665	0,025884667	NA	NA	NA	NA	NA	31,0615999	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NE	NO	NO	NE NO) 1116,1	15 TJ NCV
O_AviCruise	1A3aii(i)	Domestic aviation cruise (civil)		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NE	NO	NO	NE NO) NO	TJ NCV
P_IntShipping	1A3di(i)	International maritime navigation		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO NO) NO	TJ NCV
z_Memo	1A5c	Multilateral operations		NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NO	NO	NO	NO	NO	NO	NO NO) NO	TJ NCV
z_Memo	68	Other not included in national total of the entire territory (please specify in the IIR)		NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NO	NO	NO	NO	NO	NO	NO NO	O NO	Please specify and/or provide details in the IIR
N_Natural	11A	Volcanoes		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO NO	O NO	Please specify and/or provide details in the IIR
N_Natural	118	Forest fires		0,195615	0,586845	0,039123	0,039123	0,08646699	0,105681884	0,163326548	0,00778203	5,86845	NA.	NA.	NA	NA	NA.	NA.	NA	NA	NA.	NA	NA.	NA.	NA	NA.	NA.	NA.	NA	NO	NO	NO	NO NO) 1956,1	16 Area of forest burned [ha]
N_Natural	110	Other natural emissions (please specify in the IIR)		NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NO	NO	NO	NO NO) NE	Please specify and/or provide details in the IIR

